Dissipative Particle Dynamics: Foundation, Evolution and Applications Lecture 3: New methods beyond traditional DPD

George Em Karniadakis

Division of Applied Mathematics, Brown University & Department of Mechanical Engineering, MIT & Pacific Northwest National Laboratory, CM4

The CRUNCH group: www.cfm.brown.edu/crunch

Outline

1. Single Particle DPD

2. Many-body DPD

Quadratic EOS \longrightarrow Higher-order EOS

3. Energy conservative DPD

Isothermal system \longrightarrow Non-isothermal system

4. Smoothed DPD

Bottom-up approach ----> Top-down approach

5. Other DPD models

Outline

1. Single Particle DPD Particle size: mono-size \longrightarrow multi-size 2. Many-body DPD Quadratic EOS -----> Higher-order EOS 3. Energy conservative DPD Isothermal system ----> Non-isothermal system 4. Smoothed DPD Bottom-up approach ----> Top-down approach 5. Other DPD models

Successful DPD applications using mono-size particles

Application 1: Polymer drops in a shear flow

- Chen, et al. J. Non-Newtonian Fluid Mech., 2004.

Application 2: Flow around spheres

– Chen, et al. Phys. Fluids, 2006.

Successful DPD applications using mono-size particles

Application 3: Dynamic of colloids in electric fields

– Zhou, et al. J Chem. Phys., 2013.

Application 4: Accurate Modeling of Red Blood Cells

— Pivkin & Karniadakis, PRL, 2008.

Disadvantage of using mono-size particles

Problem: DPD simulation using mono-size particles is still too expensive for some cases such as modeling of many colloids or many RBCs.

Solution: Multi-size particles. — Single Particle DPD model

Single Particle DPD model

DPD Generalization:

Extra requirements:

- ✓ Should be easy to be implemented!
- ✓ Should be a generalization of DPD!

— Pan, Pivkin & Karniadakis, Europhys. Lett., 2008.

Single Particle DPD model Equations of Motion: $\dot{\mathbf{r}}_i = \mathbf{v}_i$ $\mathbf{F}_{ij} = \mathbf{F}_{ij}^C + \mathbf{F}_{ij}^T + \mathbf{F}_{ij}^R + \widetilde{\mathbf{F}}_{ij}$ $\dot{\mathbf{v}}_i = \frac{1}{m} \sum_{i \neq i} \mathbf{F}_{ij}$ $\mathbf{F}_{ij}^C = -V'(r_{ij})\mathbf{e}_{ij}$ Conservative force $\dot{\mathbf{\Omega}}_i = \frac{1}{I} \sum_{i \neq j} \mathbf{T}_{ij}$ $\mathbf{F}_{ij}^T = -\gamma_{ij} m \mathbf{\Gamma}_{ij} \cdot \mathbf{v}_{ij}$ Translational force $\mathbf{F}_{ij}^{R} = -\gamma_{ij} m \mathbf{\Gamma}_{ij} \cdot \begin{vmatrix} \mathbf{r}_{ij} \times (\lambda_{ij} \mathbf{\Omega}_{i} + \lambda_{ji} \mathbf{\Omega}_{j}) \end{vmatrix} \begin{array}{c} \text{Rotational} \\ \text{force} \end{vmatrix}$ $\mathbf{F}_i = \sum_j \mathbf{F}_{ij}$ $\widetilde{\mathbf{F}}_{ij}dt = (2k_B T \gamma_{ij} m)^{1/2} \left| \widetilde{A}(r_{ij}) \overline{d\mathbf{W}_{ij}^S} + \right|$ $\mathbf{T}_i = -\sum_j \lambda_{ij} \mathbf{r}_{ij} \times \mathbf{F}_{ij}$ Random force $\widetilde{B}(r_{ij})\frac{1}{d}\mathrm{tr}[d\mathbf{W}_{ij}]\mathbf{1} + \widetilde{C}(r_{ij})d\mathbf{W}_{ij}^A] \cdot \mathbf{e}_{ij}$ $\lambda_{ij} = \frac{R_i}{R_i + R_{\cdot}}$ $\Gamma_{ii} = A(r_{ii})\mathbf{1} + B(r_{ii})\mathbf{e}_{ii}\mathbf{e}_{ii}$ is weighting matrix $\lambda_{ij} = 1/2$ when $R_i = R_j$

— Pan, Pivkin & Karniadakis, Europhys. Lett., 2008.

Examples of Single Particle DPD

Rheology in Colloidal Suspensions:

– Pan, Caswell & Karniadakis, Langmuir, 2010.

Relative viscosity vs Pe number:

Colloid transport in porous media:

— Pan and Tartakovsky, Adv. Water Resour., 2013.

Colloid transport surrounding a single collector:

Colloid transport in a polysized porous medium:

Examples of Single Particle DPD

Flow around a circular cylinder:

— Ranjith, et al. J. Comput. Phys., 2013.

Velocity vector:

Velocity and density profiles across the cylinder:

Comparison of drag coefficients:

Re	Experiment	DPD
10	2.93	2.99
20	2.08	2.14
30	1.76	1.74
40	1.58	1.66

Examples of Single Particle DPD

Low-dimensional model for

the red blood cell:

RBC shapes at various stretching forces:

RBCs in a channel with a geometrical constriction:

— Pan, et al.& Karniadakis., Soft Matter, 2010.

Aggregation of RBCs under shear:

— Fedosov, et al.& Karniadakis, PNAS, 2011.

Outline

- **1. Single Particle DPD**Particle size: mono-size —> multi-size
- 2. Many-body DPD
 - Quadratic EOS \longrightarrow Higher-order EOS
- 3. Energy conservative DPD
 - Isothermal system ----> Non-isothermal system
- 4. Smoothed DPD
 - Bottom-up approach ----> Top-down approach
- 5. Other DPD models

Equation of State (EOS) of traditional DPD

$$P = \rho k_B T + \frac{1}{3V} \left\langle \sum_i \mathbf{r}_i \cdot \mathbf{F}_i \right\rangle$$

$$= \rho k_B T + \frac{1}{3V} \left\langle \sum_i \sum_{j>i} \mathbf{r}_{ij} \cdot \mathbf{F}_{ij}^C \right\rangle$$

$$= \rho k_B T + \frac{2\pi}{3} \rho^2 \int_0^1 r F^C(r) g(r) r^2 dr$$

$$P = \rho k_B T + \lambda \cdot a \rho^2$$

$$P = \rho k_B T + \lambda \cdot a \rho^2$$

ρ

- Groot & Warren, J. Chem. Phys., 1997.

Making conservative force density dependent

The quadratic EOS is monotonic and has no van der Waals loop. It cannot produce liquid-vapor coexistence.

EOS needs high order terms of ρ to model liquid-vapor coexistence.

EOS with high order terms:

	Traditional DPD	Many-body DPD
Force	$\mathbf{F}_{ij}^{C} = \boldsymbol{a} \cdot \boldsymbol{\omega}_{C}(r_{ij}) \mathbf{e}_{ij}$	$\mathbf{F}_{ij}^{C} = \frac{1}{2} \Big(\boldsymbol{a}(\boldsymbol{\rho}_{i}) + \boldsymbol{a}(\boldsymbol{\rho}_{j}) \Big) \cdot \boldsymbol{\omega}_{C}(r_{ij}) \mathbf{e}_{ij}$
EOS	$P = \rho k_{\rm B} T + \lambda a \rho^2$	$P = \rho k_{B}T + \lambda a(\rho)\rho^{2}$

- Warren, Phys. Rev. E, 2003.

Making conservative force density dependent

Other approach: $F^{C} = \nabla (k_{B}T \ln (1 - b \cdot \rho) + a \cdot \rho) + \kappa \nabla \nabla^{2} \rho$

— Tiwari & Abraham, Phys. Rev. E, 2006.

Free oscillation of a droplet:

Nano-Jet:

— Tiwari, et al. Microfluid Nanofluid, 2008.

Droplets wetting microchannels:

Forced Water-Oil movement in capillary:

– Chen, et al. Langmuir, 2012.

Calibration of the solid-liquid interaction parameter A_{SL} related to the static contact angle θ_0 :

Two different modes of the wateroil displacement:

Flow with wetting in microchannel network:

– Pan, Ph.D Thesis, Brown University. 2010.

Electrowetting of a droplet:

Outline

- **1. Single Particle DPD**Particle size: mono-size —> multi-size
- 3. Energy conservative DPD

Isothermal system ----> Non-isothermal system

4. Smoothed DPD

Bottom-up approach ----> Top-down approach

5. Other DPD models

Energy is not conserved in traditional DPD

Equations of DPD:

DPD thermostat is good to maintain a constant temperature.

Limitation: (no energy equation)

It does not conserve the energy of the system. Thus, it is only valid for isothermal systems.

Energy-conserving DPD Model for non-isothermal fluid systems

Include the energy equation:

 $\mathbf{F}_{ii}^{C} = \alpha \omega^{C}(r_{ii}) \mathbf{e}_{ii}$ $\mathbf{F}_{ii}^{D} = -\gamma \omega^{D} (r_{ii}) (\mathbf{e}_{ii} \cdot \mathbf{v}_{ii}) \mathbf{e}_{ii}$ $\mathbf{F}_{ii}^{R} = \boldsymbol{\sigma}\omega^{R}(r_{ii})\zeta_{ii}dt^{-1/2}\mathbf{e}_{ii}$ $\omega^{C}(r) = 1 - r / r_{c}$ $\left[w_R\right]^2 = w_D = \left(1 - \frac{r}{r}\right)^S$ $\sigma_{ij}^{2} = \frac{4\gamma_{ij}k_{B}T_{i}\cdot T_{j}}{T_{i}+T_{i}}$

$$\begin{split} C_{v}dT_{i} &= \sum_{i \neq j} q_{ij}^{cond} dt + \sum_{i \neq j} q_{ij}^{visc} dt + \sum_{i \neq j} q_{ij}^{R} dt \\ q_{lj}^{cond} &= \sum_{j \neq i} k_{ij} w_{CT}(r_{ij}) \left(\frac{1}{T_{i}} - \frac{1}{T_{j}} \right) & \text{Heat} \\ \text{conduction} \\ q_{lj}^{visc} &= \frac{1}{2C_{v}} \sum_{j \neq i} \left(w_{D}(r_{ij}) \left[\gamma_{ij} \left(\mathbf{e}_{ij} \cdot \mathbf{v}_{ij} \right)^{2} \right] \right)^{2} \\ &- \frac{\left(\sigma_{ij} \right)^{2}}{m} - \sigma_{ij} w_{R}(r_{ij}) \left(\mathbf{e}_{ij} \cdot \mathbf{v}_{ij} \right) \zeta_{ij} \\ q_{lj}^{R} &= \sum_{j \neq i} \alpha_{ij} w_{RT}(r_{ij}) dt^{-1/2} \zeta_{ij}^{e} \\ & \text{Fluctuating} \\ w_{CT}(r_{ij}) &= \left[w_{RT}(r_{ij}) \right]^{2} = \left(1 - \frac{r_{ij}}{r_{cut}} \right)^{S_{T}} \\ &\alpha_{ij} &= \sqrt{2k_{B}k_{ij}}, \quad k_{ij} = C_{v}^{2}\kappa(T_{i} + T_{j})^{2} \alpha_{v} \mathcal{A}k_{B} \end{split}$$

— Ripoll & Español, Int. J. Mod. Phys. C, 1998.

Natural convection heat transfer simulation:

— Abu-Nada, Phys. Rev. E, 2010.

Cold wall T_C g H H (dT/dx=0) X=0Hot wall X=1 Temperature isotherms and velocity field (sold lines: eDPD, dashed dotted lines: finite volume solutions):

Heat conduction in nanocomposite:

— Qiao and He, Molecular Simulation, 2007.

Thermal conductivity enhancement by nanoparticles:

Natural convection in eccentric annulus:

— Cao, et al. Int. J. Heat Mass Transfer, 2013.

Physical model:

Isotherms for $Ra = 4.59 \times 10^4$ and Pr = 0.7:

eDPD Experiment

Flow between Cold-Hot walls:

— Li, et al.& Karniadakis, J. Comput. Phys., 2014.

An easy way to compute the thermal conductivity: - Li, et al.& Karniadakis, J. Comput. Phys., 2014.

The heat conduction of a fluid is governed by

$$\rho C_{\nu} \frac{\partial T}{\partial t} = \eta \nabla^2 T + \rho q \quad \text{For steady state } \lambda \nabla^2 T = -Q \quad \checkmark \quad \upsilon \nabla^2 \mathbf{V} = -g$$
$$\lambda = \eta / \rho C_{\nu}, \text{ and } Q = q / C_{\nu}$$

With a constant thermal diffusivity λ the steady state solution

Outline

- 1. Single Particle DPD
 Particle size: mono-size —> multi-size
- 2. Many-body DPD Quadratic EOS \longrightarrow Higher-order EOS
- 3. Energy conservative DPD Isothermal system ----> Non-isothermal system

4. Smoothed DPD

Bottom-up approach \longrightarrow Top-down approach

5. Other DPD models

Mapping DPD units to Physical units

Bottom-up approach: DPD is considered as coarse-graining of MD system

1. The mass of the DPD particle is N_m times the mass of MD particle.

$$m_{DPD} = N_m \cdot m_{MD}$$

2. The cut-off radius is determined by equating mass densities of MD and DPD systems.

$$\frac{m_{DPD} \cdot \rho_{DPD}}{r_{C}^{3}} = \frac{m_{MD} \cdot \rho_{MD}}{\sigma^{3}}$$

3. The time scale is determined by insisting that the shear viscosities of the DPD and MD fluids are the same.

$$t_{DPD} = \frac{V_{DPD}}{V_{MD}} \left(\frac{r_{C}}{\sigma}\right)^{2} t_{MD}$$

DPD and Smoothed DPD

	DPD	Smoothed DPD
Major difference	Bottom-up approach	Top-down approach
	Coarse-graining force field governing DPD particles	Discretization of fluctuating Navier-Stokes equation
Input <i>s</i>	Forms and coefficients for particle interactions, temperature, mesoscale heat friction	Equation of state, viscosity, temperature, thermal conductivity
Outputs	Equation of state, diffusivity, viscosity, thermal conductivity	As given
Advantages	 No requirements in constitutive equation. Good for complex materials and systems involving multicomponents. 	Clear physical definition of parameters in Navier- Stokes equation
Disadvantages	 No clear physical definition for the parameters. Need to map DPD units to physical units based on output properties. 	Must know the constitutive equation and properties of the system.

STOP

Equations of Smoothed DPD

Navier-Stokes equations in a Lagrangian framework:

$$\frac{d\rho}{dt} = -\rho \nabla \cdot \mathbf{v}$$

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla P + \eta \nabla^2 \mathbf{v} + \left(\zeta + \frac{\eta}{3}\right) \nabla \nabla \cdot \mathbf{v}$$

$$T\rho \frac{ds}{dt} = \phi + \kappa \nabla^2 T$$

The transport coefficients are the shear and bulk viscosities η , ζ and the thermal conductivity κ . They are input parameters.

Discretize above equations using smoothed particle hydrodynamics (SPH) methodology, and introduce systematically thermal fluctuations via *GENERIC* framework, then we have the governing equations of smoothed DPD:

$$d\mathbf{r}_{i} = \mathbf{v}_{i}dt \quad \mathbf{F}^{\mathbf{C}} \quad \mathbf{F}^{\mathbf{D}} \quad \mathbf{F}^{\mathbf{R}}$$

$$md\mathbf{v}_{i} = \sum_{j} \left[\frac{P_{i}}{d_{i}^{2}} + \frac{P_{j}}{d_{j}^{2}} \right] F_{ij}\mathbf{r}_{ij}dt - \sum_{j} (1 - d_{ij})a_{ij}\mathbf{v}_{ij}dt - \sum_{j} (1 - d_{ij}) \left(\frac{a_{ij}}{3} + b_{ij}\right) \mathbf{e}_{ij}\mathbf{e}_{ij} \cdot \mathbf{v}_{ij}dt + md\tilde{\mathbf{v}}_{i}$$

$$T_{i}dS_{i} = \frac{1}{2} \sum_{j} \left(1 - d_{ij} - \frac{T_{j}}{T_{i} + T_{j}} \frac{k_{B}}{C_{i}} \right) \left[a_{ij}\mathbf{v}_{ij}^{2} + \left(\frac{a_{ij}}{3} + b_{ij}\right) \times (\mathbf{e}_{ij} \cdot \mathbf{v}_{ij})^{2} \right] dt - \frac{2k_{B}}{m} \sum_{j} \left(\frac{T_{i}T_{j}}{T_{i} + T_{j}} \left(\frac{10}{3} a_{ij} + b_{ij} \right) dt - 2\kappa \sum_{i} \frac{F_{ij}}{d_{i}d_{i}} T_{ij}dt - 2\kappa \frac{k_{B}}{C_{i}} \sum_{j} \left(\frac{F_{ij}}{d_{i}d_{j}} T_{j}dt + T_{i}d\tilde{S}_{i}. \right)$$

- Español and Revenga, Phys. Rev. E, 2003.

Examples of Smoothed DPD

100

Polymer chain in suspension: - Litvinov, et al. Phys. Rev. E, 2008.

Solvent: Newtonian fluid

Polymer chain: Finitely Extendable Nonlinear Elastic (FENE) springs

Polymer conformations under confinement:

Examples of Smoothed DPD

Flow through porous media: - Bian, et al. Phys. Fluids, 2012.

Model:

Three-dimensional dimensionless drag coefficient:

A colloidal particle near a rigid wall:

Diffusion coefficients perpendicular and parallel to the wall:

Outline

- 1. Single Particle DPD
 Particle size: mono-size —> multi-size
- 3. Energy conservative DPD Isothermal system — Non-isothermal system
- 4. Smoothed DPD
 - Bottom-up approach ----> Top-down approach
- 5. Other DPD models

Other DPD models

- 1. Low-mass DPD model for an approximation of incompressible fluids.
 - Phan-Thien, et al. Exponential-time differencing schemes for low-mass DPD systems. Computer Physics Communications, 2014. 185(1): 229-235.
- 2. Spring model for colloids in suspension.
 - Phan-Thien, et al. A spring model for suspended particles in dissipative particle dynamics. Journal of Rheology, 2014. 58(4): 839-867.

3. Anisotropic DPD particle (under development in CRUNCH group).

References

- Hoogerbrugge, P.J. and J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters, 1992. 19: 155-160.
- Español, P. and P. Warren, *Statistical mechanics of dissipative particle dynamics.* Europhysics Letters, 1995. **30**: 191-196.
- Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997. 107: 4423-4435.
- Marsh, C.A., G. Backx, and M.H. Ernst, Static and dynamic properties of dissipative particle dynamics. Physical Review E, 1997. 56: 1676-1691.
- Español, P., Dissipative particle dynamics with energy conservation. Europhysics Letters, 1997. 40: 631-636.
- Español, P., *Fluid particle model*. Physical Review E, 1998. 57: 2930-2948.
- Lowe, C.P., An alternative approach to dissipative particle dynamics. Europhysics Letters, 1999. 47: 145-151.
- Español, P. and M. Revenga, Smoothed dissipative particle dynamics. Physical Review E, 2003. 67: 026705.
- Soddemann, T., B. Dunweg, and K. Kremer, *Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations*. Physical Review E, 2003. 68: 046702.

References

- Warren, P.B., *Vapor-liquid coexistence in many-body dissipative particle dynamics*. Physical Review E, 2003. **68**: 066702.
- Pan, W.X., I.V. Pivkin, and G.E. Karniadakis, *Single-particle hydrodynamics in DPD: A new formulation.* Europhysics Letters, 2008. **84**: 10012.
- Pivkin, I.V. and G.E. Karniadakis, Accurate Coarse-Grained Modeling of Red Blood Cells. Physical Review Letters, 2008. 101: 118105.
- Pan, W.X., B. Caswell, and G.E. Karniadakis, A low-dimensional model for the red blood cell. Soft Matter, 2010. 6: 4366-4376.
- Arienti, M., W.X. Pan, X.Y. Li and G.E. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions. Journal of Chemical Physics, 2011. 134: 204114.
- Bian, X., S. Litvinov, R. Qian, M. Ellero and N.A. Adams, *Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics*. Physics of Fluids, 2012. 24: 012002.
- Li, Z., Y.H. Tang, H. Lei, B. Caswell, and G.E. Karniadakis, *Energy-conserving dissipative particle dynamics with temperature-dependent properties.* Journal of Computational Physics, 2014. **265**: 113-127.

