

Mesoscale simulations of stimuli-sensitive polymer networks

Alexander Alexeev

Complex Fluids Modeling and Simulation Group

The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology

Polymer Networks

Types of polymer networks

- Satural (cytoskeletal structures)
- Synthetic (hydrogels)

D Properties of polymer networks

- $rac{}$ Highly permeable (porosity ~ 0.75 0.98)
- rightarrow Extremely flexible (elastic modulus ~ 1 103 kPa)
- Mechanically sturdy (support external loads)
- Sensitive to external stimuli (light, pH, T, etc)

□ Applications

- Smart and responsive materials
- Drug delivery
- Tissue engineering

Gel swelling

Tysseling-Mattiace *et al.*, J. Neuroscience, 2008

Actin network

Goal

Ono *et al.*, Nature Materials, 2007

Schmoller *et al.*, Nature Communications, 2010

Develop mesoscale model that can capture mechanical and transport properties of responsive polymer networks

Simulation Approach

3

Dissipative Particle Dynamics (DPD)

Newtonian time evolution of many-body system (similar to MD)

$$\frac{d\mathbf{r}_i}{dt} = \mathbf{v}_i \qquad \qquad \frac{d\mathbf{v}_i}{dt} = \sum \left(F_{ij}^C + F_{ij}^D + F_{ij}^R\right)\hat{\mathbf{r}}_{ij}$$

- Repulsive force
- Accounts for compressibility
- Dissipative drag force
- Mimics viscosity
- Stochastic force
- Represent thermal fluctuations

□ Pair-wise and central forces to preserve hydrodynamics

Departure from Molecular Dynamics (MD) :

- Soft conservative interaction potential
- Coarse-grained in time and space ("fluid elements")

$$F_{ij}^{D} = -\gamma \left(1 - r_{ij} / r_{c} \right)^{2} \left(\hat{\mathbf{r}}_{ij} \cdot \mathbf{v}_{ij} \right)$$

 $F_{ii}^{C} = a_{ii} (1 - r_{ii} / r_{c})$

$$F_{ij}^{R} = \sqrt{2\gamma k_{B}T} \left(1 - r_{ij} / r_{c} \right) \zeta_{ij} / \sqrt{\Delta t}$$

□ Model polymeric networks as random lattice of interconnected filaments

Replicates microscopic architecture at mesoscale level

Polymer Network Model

□ Network is created in two steps

- Randomly distribute N cross-linking nodes in simulation box
- rightarrow Connect each node to the *C* closest nodes
- N = Number of corss linking nodes
- C = Average connectivity (cross linking density)

Accurate control over network properties

 $Porosity(\varepsilon) = \frac{Volume of voids}{Total volume}$

Macromolecules and Nanoparticles

- ❑ Bead-spring model to model polymer chains
- FENE spring to model flexible polymers
- Harmonic stretching and angle (triple)
 potentials to model semi-flexible polymers
- DPD beads with fixed relative position to model rigid particles
- Size is characterized by effective hydrodynamic radius
- **DPD** potentials account for interactions with surroundings

Transport Through Polymer Networks

- Study transport through polymer networks
 - Permeation
 - The Self-diffusion
 - Particle diffusion
 - Chain diffusion
- Quantify dependence of transport properties on network geometry
- Probe effect of mechanical deformation on permeation and diffusion

Network Permeability

- □ Normalized permeability is independent of network internal structure
 - Solely function of fraction of void volume (porosity)
 - Good agreement with theory and experiment

Diffusion of Rigid Particles

Diffusion of Polymer Chains

- **Good agreement with theory and experiment**
- Smaller diffusion coefficient for particles comparing to polymer chains
 Change in radius of gyration of polymer chains

- Opposite effect in transverse direction
- □ Total diffusivity remains unchanged under axial deformation

- **Permeability in** *y* **direction remains unchanged under shear deformation** Filaments rotate in *xz* plane
- Total diffusivity remains unchanged under shear deformation

Permeability in Principal Direction

Searly linear dependence on magnitude of orientation tensor eigenvalues

Release From Responsive Capsules

□ Release from drug delivery microcapsules

- Controllable
- Son-destructive
- Sensitive to external stimuli

□ Study release from responsive microgel capsules

Swelling/deswelling volume transitions

☐ Mesoscale model for responsive polymer networks (gels)

- Micromechanics of polymer network
- Explicit solvent
- Diffusive and advective transport
- Swelling/deswelling volume transition

Motornov *et al*. Prog. Polym. Sci., 2010

Responsive Microgel

Random network of interconnecting elastic filaments

- Filaments of DPD beads connected by stretching and bending springs
- Spherical capsule is formed by trimming homogeneous network

Modeling Gel Volume Transition

Network volume transition is modeled by varying equilibrium length of network filaments

Accounts for internal stresses that force network to shrink or expand

- Increase equilibrium length of springs to model swelling
- Decrease equilibrium length of springs and strength of DPD potentials to model deswelling

Swelling Kinetics of Spherical Capsules

Capsules Filled With Particles and Polymer Chains

Probe release of macromolecules and nanoparticles from responsive microgel capsules

Release From Capsules at Initial Equilibrium

□ No release from capsule at initial state

There are the terms of solutes is comparable with network average mesh size

20

Release From Swelling Capsules

- □ Steady release during swelling
 - Defined by diffusion through capsule shell including entropic barrier to enter membrane
 - Polymer chains release slower than rigid nanoparticles
 - Agrees well with 1D diffusion through spherical shell
 - Constant release rate

Release From Deswelling Capsules

□ Capsule deswelling leads to squeezing flow from capsule interior

Results is rapid hydrodynamic release

Release From Deswelling Capsules

Prevent Membrane Sealing

□ Introduce long rigid microrods in capsule interior

Deswelling

Deswelling with microrods

Rods stretch membrane of deswelling capsule and prevent pore closing

Enhances flow driven release

Release From Deswelling Capsules With Rods

□ Inclusion of rigid microrods enhances nanoparticle release

- Membrane stretches due to interaction with rods
 - Mitigates rapid closure of membrane local "defects"
- Thain release remains unaffected
 - Release of linear macromolecules is not limited by pore sealing

Scaling Analysis

Estimate rate of release during deswelling

Compare relative strength of advective and diffusive transport

$$Pe = \frac{Rate of advective transport}{Rate of diffusive transport} = \frac{ub}{D_{nn}}$$

b =Cap sule wall thickness

- *u* = Average discharge velocity = $\frac{\text{Rate of change of volume}}{\text{Surface area}} = \frac{\Delta V / \tau_c}{S}$
- $D_{pn} = \text{Effective diffusion coefficient through capsule membrane}$ $\tau_c = \frac{R^2}{D_0} = \text{Time scale of capsule deswelling} \qquad R = \text{Capsule outer radius at equilibriu m}$

Good agreement with simulations of polymer chain release

 $rac{}$ Model Pe = 450, simulations Pe = 420,

Qualitative agreement for nanoparticles

- Particle filtering due to decrease in membrane pore size
- \Im Good agreement with rods: model Pe = 120, simulations Pe = 90
 - Rods prevent particle filtering

Microswimmers

- Microswimmers autonomous microscale vehicles that can self-propel in a fluid
- Numerous applications in nanotechnology, MEMS research, and medicine
 - Drug delivery
 - Lab-on-a-chip applications
 - Micro-fabrication
- Complex design of microswimmers limits their utilization
- □ Goal: design a simple and controllable microswimmer
 - Utilize responsive hydrogel to drive microswimmer

Natural microswimmers

Spermatozoid

E.Coli

Artificial microswimmers

Dreyfus, Nature, 2005

Tiantian, HAL, 2014

• Bi-layered Gel

- Gel modeled as random network of interconnected elastic filaments (springs)
 - Filaments composed of stretching and bending springs connecting DPD beads
 - Metworks is immersed in DPD solvent
- □ Gel volume transition is modeled by varying equilibrium length of network filaments
 - Accounts for internal stresses that cause network to shrink or expand

□ Swelling bi-layered sheets undergo bending

- Sheets have identical material properties
- One layer expands in response to stimulus
- Second layer is passive

Gel Microswimmer

Bi-layered gel deforms upon periodic stimulus application

- Mismatch between stresses at gel interface
- Internal bending moment in network develops
- □ X-shaped geometry
 - Large arms maximize bending
- Swimming process 4 steps:
 - Expansion
 - Bending
 - Contraction
 - Straightening
- Each periodic application of stimulus produces net forward displacement

Swimming Cycle

□ Swimmer trajectory

- Large forward displacement during expansion and bending phases
- Small backward displacement during contraction and straightening phases
- □ Swimmer speed similar to that of *E.coli*
 - $rac{\sim} 0.2$ body-lengths/period
- Larger ε leads to better swimming performance

 $\varepsilon = \frac{\text{expanded network volume}}{\text{contracted network volume}}$

• Why swimmer swims at low Reynolds number

- Need to create time irreversible motion
- Characterize swimmer kinematics
 - The Arc length (extension)
 - Curvature (bending)
- Hydrodynamic drag for bending is larger than drag for extension
 - Leads to time delay between changes in arc length and curvature
- Swimmer propels due to timescale difference between bending/expansion

• Optimizing Swimming Performance

□ Swimming performance defined by

- rightarrow Swelling ratio (ε)
- Relative elasticity (thickness) of sheets (R)
- Larger swelling ratios lead to faster propulsion
- Gel thickness ratio defines swimmer bending
 - Passive layers that are either too thick or too thin hinder bending
- Best swimming performance occurs for a thickness ratio of 1.4

Scaling Analysis

□ Increasing *R* leads to a monotonic decrease in swimmer's extension $rac{L_s}{L \sim (\varepsilon^{1/3} + R)/(1 + R)}$, (*L_s* is swollen length)

□ For low/high *R* values curvature decreases

Teads to poor swimming performance

$$= \kappa L \sim \frac{6R(1-\varepsilon^{-1/3})}{\varepsilon^{1/3}(1+R\varepsilon^{-1/3})^3} \left(\frac{L}{d_R}\right)$$

where κ is the curvature

The ratio of extensional and bending time scales

$$\Im \left(\frac{t_e}{t_b} \sim \frac{C_e}{C_b} \frac{8\left(1 + R\varepsilon^{-1/3}\right)^3}{3R\varepsilon^{-1/3}} \left(\frac{d_R}{L}\right)^2 \right)$$

 $\sim C_e/C_b \sim 0.5$ is ratio of drag coefficients for extension and bending

Theory predicts t_e/t_b minimum at $R \sim 1$ Theory supports computational models

Summary: Polymer Network

Developed mesoscale model for random polymer networks

- Validated by simulating transport properties and swelling kinetics
 - Good agreement with theory and experiment

□ Examined transport in mechanically deformed (anisotropic) networks

- Stretching enhances permeation and diffusion in direction of deformation
- Total diffusivity remains unchanged under deformation
- Permeability defined by internal network orientation

Masoud and Alexeev, Permeability and diffusion through mechanically deformed random polymer networks *Macromolecules* 43, 10117 (2010)

Summary: Microgel Capsules

Responsive capsules enable control over release dynamics

- Swollen microgel capsules: slow diffusive release
- Deswelling capsules: fast hydrodynamic release
 - Precise control over released amount
 - Pulsatile release with repeating stimuli

□ Applications

 Targeted drug delivery, in-vivo sampling, viruses removal, detoxification

Masoud and Alexeev, Controlled release of nanoparticles and macromolecules from responsive microgel capsules **ACS Nano** 6, 212, 2012

Summary: Gel Swimmer

- Designed a simple self propelling hydrogel microswimmer
- □ Examined effects of swelling ratio
 - Larger ratios lead to faster swimming
- Developed an approach for optimizing swimming performance
 - $rac{R} \sim 1.4$ improves swimming speeds
- Explained fundamentals behind time irreversible motion
 - Time delay between expansion and bending

Nikolov, Yeh, Alexeev, Self-propelled microswimmer actuated by stimulisensitive bilayered hydrogel. *ACS Macro Letters* 4, 84, 2015.

Acknowledgment

□ Students:

- Hassan Masoud
- Peter Yeh
- Svetoslav Nikolov

□ Funding:

- ACS-PRF Doctoral New Investigator Award
- ☞ NSF CAREER Award (DMR-1255288)

National Science Foundation WHERE DISCOVERIES BEGIN