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Underlying Idea

Simulating a realistically 
large system Simulating an ensemble of a molecular system

Equilibrium MD Particle-based methods
(e.g. DPD)

Non-equilibrium systemsMultiscaling modeling
(Quantification of fluctuations)

It is time to analyze uncertainties of particle-based methods.
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Equilibrium MD Simulation

time

𝐴𝐴 ≈
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝐴𝐴𝑖𝑖

• Sampling method

• Periodic boundary conditions

sampling errors
or statistical errors

finite-system-size 
effects
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Uncertainty Quantification for MD
• Parameter uncertainty quantification

force field → material properties

• Two types of intrinsic uncertainty in MD simulation results

 Statistical errors

 Finite-system-size effects

Statistical
Errors

Finite-system-
size effects

Parameter
UQ

→ MD simulation of ethylene carbonate liquid 5



Approaches

• Large-sized ensemble MD runs

 Accurate statistics

 Direct evaluation of statistical errors

Ensemble of MD simulators

• Analysis (theoretical approaches)

 Statistical mechanics

 Probability theory

 Continuum mechanics

6



Outline

Part 1. Statistical errors in the estimation of self-diffusion coefficients

 VACF method versus MSD method

 Part 1.1. Time-averaging and ensemble-averaging

 Part 1.2. Particle-averaging

Part 2. Finite-system-size corrections for self-diffusion coefficients

Part 3. Estimation of shear viscosity
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Part 1.

Statistical Errors in the Estimation of 

Self-Diffusion Coefficients

0.  Background and motivating questions

1.  Ensemble-averaging and time-averaging

2.  Particle-averaging
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Self-Diffusion Coefficient

𝐷𝐷 = lim
𝑡𝑡→∞

𝐱𝐱 𝑡𝑡 − 𝐱𝐱 0 2

6𝑡𝑡

𝐷𝐷 =
1
3
�
0

∞
𝐯𝐯 0 � 𝐯𝐯 𝑡𝑡 𝑑𝑑𝑡𝑡

• Definition through the mean-square-displacement (MSD)

• Alternatively, through the velocity autocorrelation function (VACF)
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M
SD

Statistical Errors in VACF, MSD, and 𝑫𝑫 𝒕𝒕

𝐷𝐷 𝑡𝑡 = �
0

𝑡𝑡
𝑣𝑣 0 𝑣𝑣 𝑡𝑡′ 𝑑𝑑𝑡𝑡′

VA
C

F VACF
method

integration

MSD 
method

differentiation

𝐷𝐷 𝑡𝑡 =
1
2
𝑑𝑑
𝑑𝑑𝑡𝑡 𝑥𝑥 𝑡𝑡 − 𝑥𝑥 0 2

1. Are the two methods equivalent?
2. Can we calculate the error bars of 𝐷𝐷 𝑡𝑡 from those of VACF or MSD?
3. Can we estimate the error bars from VACF under reasonable assumptions?

A colloidal particle suspended in a simple molecular fluid

Time-dependent diffusion 
coefficient 𝐷𝐷 𝑡𝑡
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Three Types of Averaging Procedures

• Ensemble-averaging over (i.i.d.) samples

• Time-averaging over trajectory

• Particle-averaging over identical particles

11



Ensemble-Averaging

𝑣𝑣1 0 𝑣𝑣1 𝑡𝑡 = �𝑣𝑣1𝑣𝑣1 𝑡𝑡 𝜌𝜌 𝑥𝑥1,⋯ , 𝑥𝑥𝑁𝑁,𝑣𝑣1,⋯ , 𝑣𝑣𝑁𝑁 𝑑𝑑𝑥𝑥1 ⋯𝑑𝑑𝑥𝑥𝑁𝑁𝑑𝑑𝑣𝑣1 ⋯𝑑𝑑𝑣𝑣𝑁𝑁

Ensemble of MD simulators

1
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�
𝑖𝑖=1

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑣𝑣1
𝑖𝑖 0 𝑣𝑣1

𝑖𝑖 𝑡𝑡

 Generating an equilibrium sample is usually time-consuming.
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Time-Averaging

1
𝑁𝑁𝑡𝑡
�
𝑖𝑖=1

𝑁𝑁𝑡𝑡

𝑣𝑣1 𝑡𝑡𝑖𝑖 𝑣𝑣1 𝑡𝑡𝑖𝑖 + 𝑡𝑡

← Calculation of 𝑣𝑣1 0 𝑣𝑣1 3∆𝑡𝑡

𝑣𝑣1 0 𝑣𝑣1 𝑡𝑡 = lim
𝒯𝒯→∞

1
𝒯𝒯
�
0

𝒯𝒯
𝑣𝑣1 𝑡𝑡′ 𝑣𝑣1 𝑡𝑡′ + 𝑡𝑡 𝑑𝑑𝑡𝑡′

Ergodic hypothesis

 Calculating 𝑣𝑣1 0 𝑣𝑣1 𝑛𝑛∆𝑡𝑡 0 ≤ 𝑛𝑛 ≤ 𝑛𝑛𝑠𝑠𝑠𝑠𝑚𝑚 on the fly requires storing 
trajectory of length 𝑛𝑛𝑠𝑠𝑠𝑠𝑚𝑚 + 1.
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Particle-Averaging

𝑣𝑣 0 𝑣𝑣 𝑡𝑡 =
1
𝓃𝓃
�
𝑖𝑖=1

𝓃𝓃

𝑣𝑣𝑖𝑖 0 𝑣𝑣𝑖𝑖 𝑡𝑡

If there are 𝑁𝑁𝑠𝑠𝑠𝑠𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑠𝑠𝑠𝑠 identical particles in the system, one can also take particle-

averaging over 𝓃𝓃 particles (1 ≤ 𝓃𝓃 ≤ 𝑁𝑁𝑠𝑠𝑠𝑠𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑠𝑠𝑠𝑠). 

 Three types of averaging procedures can be combined.
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Scaling Behavior of Statistical Error

𝜀𝜀2 𝑡𝑡 ≈
𝑎𝑎 𝑡𝑡
𝒩𝒩𝒯𝒯𝓃𝓃∗

• 𝒩𝒩 = number of independent trajectories (ensemble-averaging)

• 𝒯𝒯 = length of a trajectory (time-averaging)

• 𝓃𝓃∗ = effective number for particle averaging

 For sufficiently small 𝓃𝓃, 𝓃𝓃∗ ≈ 𝓃𝓃

 Otherwise, 𝓃𝓃∗ ≪ 𝓃𝓃
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Part 1.1. 
Ensemble Averaging and Time Averaging

• Theoretical error estimates

• MD simulation results: LJ fluid / EC liquid

• Further analysis: Langevin equation driven by GWN/PWSN 

Kim, Borodin, and Karniadakis, “Quantification of Sampling Uncertainty for Molecular Dynamics 
Simulation: Time-dependent Diffusion Coefficient in Simple Fluids”, in press, J. Comput. Phys.
(http://dx.doi.org/10.1016/j.jcp.2015.09.021) 16



Main Results

For both VACF and MSD methods, the standard errors of 𝐷𝐷 𝑡𝑡 are the same.  
 For ensemble-averaging, 

𝜀𝜀2 𝑡𝑡 =
1
𝒩𝒩
�
0

𝑡𝑡
𝑑𝑑𝑡𝑡′�

0

𝑡𝑡
𝑑𝑑𝑡𝑡′′ 𝑓𝑓 0 𝑓𝑓 𝑡𝑡′′ − 𝑡𝑡′ + 𝑓𝑓 𝑡𝑡′ 𝑓𝑓 𝑡𝑡′′

 For time-averaging,

𝜀𝜀2 𝑡𝑡 =
1
𝒯𝒯
�
−∞

∞
𝑑𝑑𝛼𝛼 𝑓𝑓 𝛼𝛼 �

0

𝑡𝑡
𝑑𝑑𝑡𝑡′�

𝛼𝛼

𝛼𝛼+𝑡𝑡
𝑑𝑑𝑡𝑡′′ 𝑓𝑓 𝑡𝑡′ − 𝑡𝑡′′ + �

𝛼𝛼

𝛼𝛼+𝑡𝑡
𝑓𝑓 𝑡𝑡′ 𝑑𝑑𝑡𝑡′�

𝛼𝛼−𝑡𝑡

𝛼𝛼
𝑓𝑓 𝑡𝑡′ 𝑑𝑑𝑡𝑡′

where 𝑓𝑓 𝑡𝑡 is the VACF.

 Once the VACF has been (roughly) estimated, the standard errors of 𝐷𝐷 𝑡𝑡 as well 
as the VACF and the MSD are available.

 These results are obtained under the assumption that the velocity process 𝑣𝑣 𝑡𝑡 is a 
Gaussian process (GPA = Gaussian process approximation).

17



Derivation, Step 1: Error Correlation Functions

Error correlation 
function of VACF
𝜀𝜀VACF 𝑡𝑡′ 𝜀𝜀VACF 𝑡𝑡′′

Error correlation 
function of MSD
𝜀𝜀MSD 𝑡𝑡′ 𝜀𝜀MSD 𝑡𝑡′′

𝜀𝜀𝐷𝐷2 𝑡𝑡
Mean-squared error 

of 𝐷𝐷 𝑡𝑡

𝐷𝐷 𝑡𝑡 = �
0

𝑡𝑡
𝑣𝑣 0 𝑣𝑣 𝑡𝑡′ 𝑑𝑑𝑡𝑡′ 𝜀𝜀𝐷𝐷2 𝑡𝑡 = �

0

𝑡𝑡
𝑑𝑑𝑡𝑡′�

0

𝑡𝑡
𝑑𝑑𝑡𝑡′′ 𝜀𝜀𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑡𝑡′ 𝜀𝜀𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑡𝑡′′

𝐷𝐷 𝑡𝑡 =
1
2
𝑑𝑑
𝑑𝑑𝑡𝑡 𝑥𝑥 𝑡𝑡 − 𝑥𝑥 0 2 𝜀𝜀𝐷𝐷2 𝑡𝑡 = . . .

18



Derivation, Step 2: GPA

GPA of 𝑣𝑣 𝑡𝑡

GPA of 𝑥𝑥 𝑡𝑡

Error correlation function 
of VACF

𝜀𝜀VACF 𝑡𝑡′ 𝜀𝜀VACF 𝑡𝑡′′

Error correlation function 
of MSD

𝜀𝜀MSD 𝑡𝑡′ 𝜀𝜀MSD 𝑡𝑡′′

𝜀𝜀𝐷𝐷2 𝑡𝑡
Mean-squared error of 

𝐷𝐷 𝑡𝑡

 Error correlation function 𝜀𝜀VACF 𝑡𝑡′ 𝜀𝜀VACF 𝑡𝑡′′ is expressed in terms of four 
time correlation function 𝑣𝑣 0 𝑣𝑣 𝑡𝑡1 𝑣𝑣 𝑡𝑡2 𝑣𝑣 𝑡𝑡3 .

 Under the GPA, 𝒗𝒗 𝟎𝟎 𝒗𝒗 𝒕𝒕𝟏𝟏 𝒗𝒗 𝒕𝒕𝟐𝟐 𝒗𝒗 𝒕𝒕𝟑𝟑 is decomposed into

𝑣𝑣 0 𝑣𝑣 𝑡𝑡1 𝑣𝑣 𝑡𝑡2 𝑣𝑣 𝑡𝑡3 + 𝑣𝑣 0 𝑣𝑣 𝑡𝑡2 𝑣𝑣 𝑡𝑡1 𝑣𝑣 𝑡𝑡3 + 𝑣𝑣 0 𝑣𝑣 𝑡𝑡3 𝑣𝑣 𝑡𝑡2 𝑣𝑣 𝑡𝑡4 .

 The GPA of 𝑥𝑥 𝑡𝑡 is implied by that of 𝑣𝑣 𝑡𝑡 .

19



Large-Sized-Ensemble MD Run: LMP_ENS

MPI
LAMMPS LAMMPS

LAMMPS LAMMPS

MPI
VACF

Time Intg
MSD

Time Deriv

VACF
Time Intg

MSD
Time Deriv

VACF
Time Intg

MSD
Time Deriv

VACF
Time Intg

MSD
Time Deriv

Average over the ensemble
with statistical errors

Typical size of ensemble ~104 samples
 Statistical errors are suppressed by factor of 100.
Computing time provided by INCITE project: BG/Q machine at Argonne Lab 
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Long-time tail of VACF Time integral of VACF

VACF at intermediate times

Main peak of VACF

Sample size increases up to by factor of 218
Standard error decreases up to by factor of 29 = 512

Sampling Size and Quality of MD Data
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Self-Diffusion of a Solvent Particle

VACF (MD)
MSD (MD)
Theory
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Tracer-diffusion of a Colloidal Particle

VACF (MD)
MSD (MD)
Theory
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The Validity of GPA

/ 4324



MD Simulation of EC Liquid

EC = Ethylene Carbonate• Quantum-chemistry based, highly transferable atomistic force field

 APPLE&P (Atomistic Polarizable Potential for Liquids, Electrolytes, and 

Polymers) developed by Oleg Borodin

Ethylene Carbonate (EC)

C

CC

OO

O

HHHH
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MD Results for EC System

MSD 𝐷𝐷 𝑡𝑡 VACF

𝑎𝑎VACF 𝑡𝑡𝑎𝑎𝐷𝐷 𝑡𝑡𝑎𝑎MSD 𝑡𝑡
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Non-Gaussianity Indicator

Langevin equation

�̇�𝑥 𝑡𝑡 = 𝑣𝑣 𝑡𝑡

�̇�𝑣 𝑡𝑡 = −𝛾𝛾𝑣𝑣 𝑡𝑡 + 𝜉𝜉 𝑡𝑡

𝜉𝜉 𝑡𝑡′ 𝜉𝜉 𝑡𝑡′′ = 2𝑘𝑘𝐵𝐵𝑇𝑇𝛾𝛾𝛾𝛾 𝑡𝑡′ − 𝑡𝑡′′

𝜉𝜉 𝑡𝑡 is either Gaussian white noise (GWN) or Poissonian white shot noise (PWSN).

Deviations from theoretical error estimates are proportional to the fourth-order 
cumulant 𝜅𝜅 𝜉𝜉 𝑡𝑡1 , 𝜉𝜉 𝑡𝑡2 , 𝜉𝜉 𝑡𝑡3 , 𝜉𝜉 𝑡𝑡4 . 27



Part 1.2.

Particle-Averaging
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Observation: LJ Fluid 𝑵𝑵𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 = 𝟐𝟐𝟎𝟎𝟐𝟐𝟐𝟐

VACF MSD 𝐷𝐷 𝑡𝑡

𝜀𝜀2 𝑡𝑡 ≈
𝑎𝑎 𝑡𝑡
𝒩𝒩𝒯𝒯𝓃𝓃∗

For sufficiently small 𝓃𝓃, 𝓃𝓃∗ ≈ 𝓃𝓃
Otherwise, 𝓃𝓃∗ ≪ 𝓃𝓃

 GPA of 𝑣𝑣1 𝑡𝑡 , 𝑣𝑣2 𝑡𝑡 ,⋯ , 𝑣𝑣𝑁𝑁 𝑡𝑡 → Almost 1/𝓃𝓃 scaling
 Failure of multi-particle GPA 

Normalized standard errors 𝓷𝓷𝒩𝒩𝒯𝒯 𝜀𝜀2 𝑡𝑡
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Formulation

• Quantity 𝐴𝐴𝑖𝑖 obtained from particle 𝑖𝑖

Particle average of size 𝑛𝑛 : 𝑋𝑋𝑛𝑛 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝐴𝐴𝑖𝑖

• Since the particles are identical, we have
𝐴𝐴𝑖𝑖 = 𝜇𝜇

𝑉𝑉𝑎𝑎𝑉𝑉 𝐴𝐴𝑖𝑖 = 𝜎𝜎2

𝐶𝐶𝐶𝐶𝑣𝑣 𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑗𝑗 = 𝜁𝜁 𝑖𝑖 ≠ 𝑗𝑗

 In fact, 𝐴𝐴𝑖𝑖 are exchangeable random variables.
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Results

=
𝜎𝜎2

𝑛𝑛∗
Var 𝑋𝑋𝑛𝑛 =

𝜎𝜎2

𝑛𝑛
+
𝑛𝑛 − 1
𝑛𝑛

𝜁𝜁

𝑛𝑛∗ =
𝑛𝑛

1 + 𝑛𝑛 − 1 𝜁𝜁
𝜎𝜎2

• 𝜁𝜁 → 0 (uncorrelated case): 𝑛𝑛∗ → 𝑛𝑛
• 𝜁𝜁 → 𝜎𝜎2 (completely correlated case):𝑛𝑛∗ → 1

• If 𝑛𝑛 − 1 𝜁𝜁 ≪ 𝜎𝜎2,  Var 𝑋𝑋𝑛𝑛 ≈ 𝜎𝜎2

𝑛𝑛

For the investigation of the reduction of statistical errors due to particle averaging, 
we need to investigate the corvariance 𝜁𝜁 (or the correlation coefficient 𝜁𝜁/𝜎𝜎2).
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Correlation Coefficient 𝜻𝜻 𝒕𝒕 /𝝈𝝈𝟐𝟐 𝒕𝒕

Time-dependent 
diffusion coefficientVACF MSD
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Effective Number of Particle Averaging 𝒏𝒏∗

𝑛𝑛∗ for 𝐷𝐷 𝑡𝑡

Practical implications

Full particle-averaging may be very expensive 
(especially, for on-the-fly calculation).

• If trajectory computation is expensive, use 
full particle-averaging.

• Otherwise, reduce the size of particle-
averaging and calculate a longer trajectory.

 Dependences on various averaging 
parameters are under investigation.
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Summary of Part 1
1. Equivalence of the VACF and MSD methods

VACF

MSD

Diffusion 
Coefficient

Integration

Quality of data 
becomes better.

Quality of data 
becomes worse.

Quality of data is not so good.

Quality of data is quite good.

Differentiation
The same quality 

2. Scaling behavior of statistical error

𝜀𝜀2 𝑡𝑡 ≈
𝑎𝑎 𝑡𝑡
𝓃𝓃∗𝒩𝒩𝒯𝒯

• Under the GPA, 𝑎𝑎 𝑡𝑡 can be expressed in terms of ordinary (i.e., two-
time) correlation functions.

• The GPA works very well for various systems.
• 𝓃𝓃∗ ≪ 𝓃𝓃 for full particle-averaging 34



Part 2.

Finite-System-Size Correction

on Diffusion Coefficient

1. Correction formula

2. Microscopic interpretation

3. Multi-species systems

35



Finite-System-Size Correction

𝐷𝐷∞ = 𝐷𝐷𝐿𝐿 +
2.837𝑘𝑘𝐵𝐵𝑇𝑇

6𝜋𝜋𝜋𝜋𝐿𝐿

 Derived from continuum theory
Hasimoto, J. Fluid. Mech. 5, 317 (1959).
Dünweg and Kremer, J. Chem. Phys. 99, 6983 (1993).
Yeh and Hummer, J. Phys. Chem. B 108, 15873 (2004).

• Under periodic boundary conditions

• 𝐿𝐿 = simulation box size

• 𝜋𝜋 = shear viscosity𝐷𝐷𝐿𝐿

𝐷𝐷∞

Lennard-Jones Fluid
(𝝆𝝆∗ = 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐, 𝑻𝑻∗ = 𝟎𝟎.𝟕𝟕𝟐𝟐𝟐𝟐)

36



Connection to the Tail of VACF

𝐯𝐯 0 � 𝐯𝐯 𝑡𝑡 =
2𝑘𝑘𝐵𝐵𝑇𝑇
3𝑚𝑚𝜌𝜌

1
4𝜋𝜋 𝐷𝐷 + 𝜈𝜈 3/2 𝑡𝑡

−3/2 𝑡𝑡 → ∞

𝐷𝐷 =
1
3
�
0

∞
𝐯𝐯 0 � 𝐯𝐯 𝑡𝑡 𝑑𝑑𝑡𝑡

Algebraic tail of the VACF (also derived from continuum theory)

𝐯𝐯 0

𝐮𝐮 𝐱𝐱, 𝑡𝑡

𝐯𝐯 𝑡𝑡
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Long-time Tail of VACF

𝑡𝑡𝑠𝑠 =
𝐿𝐿
𝑐𝑐𝑠𝑠

Lower density Higher density

38



For a larger system, the diffusion coefficient should be estimated at a larger time.
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Corrections in Multi-Species Systems

𝐷𝐷∞ = 𝐷𝐷𝐿𝐿 +
2.837 𝑘𝑘𝐵𝐵𝑇𝑇

6𝜋𝜋𝜋𝜋
1
𝐿𝐿

Question
• Will the same finite-system-size correction be applied to the self-diffusion 

coefficient of each species?
• In other words, will the value of the slope (with respect to 𝐿𝐿−1) be the same?  

Ar/Kr mixture FENE chains
in a WCA fluid

H2O + NaCl
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Equimolar Ar/Kr Mixture
(𝝆𝝆∗ = 𝟎𝟎.𝟕𝟕𝟏𝟏𝟑𝟑𝟐𝟐, 𝑻𝑻∗ = 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗)

𝐷𝐷Ar: 0.0608 − 0.0492 𝐿𝐿−1
𝐷𝐷Kr: 0.0513 − 0.0498 𝐿𝐿−1
Slope from theory: −0.0563

Although the slopes for the finite-system-size effects on 𝐷𝐷Ar and 𝐷𝐷Kr are different 
from the theoretical prediction, the values of the two slopes are very similar. 41



FENE Chains in a WCA Fluid

𝐷𝐷fl: 0.0669 − 0.0604 𝐿𝐿−1
𝐷𝐷chain: 0.0186 − 0.0573 𝐿𝐿−1
Slope from theory: −0.0570

10 WCA Particles in a chain 
𝑛𝑛fl:𝑛𝑛chain = 100: 1

WCA Fluid with 𝜌𝜌∗ = 0.85 and 𝑇𝑇∗ = 1
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H2O + NaCl
(0.87 M, 300K, 1 atm)

𝐷𝐷water = 2.58 × 10−9m2/s
𝐷𝐷Na+ = 1.20 × 10−9m2/s
𝐷𝐷Cl− = 1.60 × 10−9m2/s

Despite quite different values of the three self-diffusion coefficients, their 
slopes for the finite-system-size correction are very similar. 43



Part 3.

Estimation of Shear Viscosity

1. Equilibrium versus non-equilibrium MD estimation

2. Finite-system-size effects
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Estimating Viscosity from Equilibrium MD

• Perturbation to the equilibrium system

�̇�𝐱𝑖𝑖 = 𝐯𝐯𝑖𝑖 + 𝛾𝛾𝑦𝑦𝑖𝑖 �𝐞𝐞𝑚𝑚

𝑚𝑚�̇�𝐯𝑖𝑖 = 𝐅𝐅𝑖𝑖 − 𝛾𝛾𝑚𝑚𝑣𝑣𝑦𝑦,𝑖𝑖 �𝐞𝐞𝑚𝑚

• Linear response theory 𝛾𝛾 → 0

𝑝𝑝𝑚𝑚𝑦𝑦 𝑡𝑡
shear

= −
𝛾𝛾𝑉𝑉
𝑘𝑘𝐵𝐵𝑇𝑇

�
0

𝑡𝑡
𝑝𝑝𝑚𝑚𝑦𝑦 0 𝑝𝑝𝑚𝑚𝑦𝑦 𝑡𝑡′ 𝑑𝑑𝑡𝑡′

• Definition of shear viscosity

𝜋𝜋 = − lim
𝑡𝑡→∞

𝑝𝑝𝑚𝑚𝑦𝑦 𝑡𝑡
shear

𝛾𝛾

𝜋𝜋 =
𝑉𝑉
𝑘𝑘𝐵𝐵𝑇𝑇

�
0

∞
𝑝𝑝𝑚𝑚𝑦𝑦 0 𝑝𝑝𝑚𝑚𝑦𝑦 𝑡𝑡 𝑑𝑑𝑡𝑡Green-Kubo formula
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Non-Equilibrium MD Simulation
(Poiseuille Flow)

• Position-dependent external force

• Steady-state velocity profile → shear viscosity

• Under periodic boundary conditions

𝐿𝐿/2 𝐿𝐿0

𝑥𝑥

𝑦𝑦

Velocity profile

External force

Backer et al, J. Chem. Phys. 122, 154503 (2005).46



Comparison

• Non-equilibrium MD

 (+) Direct method

 (+) Good signal to noise ratio

 (‒) Unrealistically large shear rate

 (‒) Use of thermostat

• Equilibrium MD

 (+) theoretically sound

 (‒) large statistical error

 The level of statistical error can be estimated by our approach.
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Finite-System-Size Effects
Lennard-Jones Fluid

(𝝆𝝆∗ = 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐, 𝑻𝑻∗ = 𝟎𝟎.𝟕𝟕𝟐𝟐𝟐𝟐)
• 𝑁𝑁𝑓𝑓𝑠𝑠 = 128 ~ 65536
• 16384 MD samples
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Summary
• Equivalence of the VACF and MSD methods for the self-diffusion coefficient

• Scaling behavior of the statistical error

𝜀𝜀2 𝑡𝑡 ≈
𝑎𝑎 𝑡𝑡
𝒩𝒩𝒯𝒯𝓃𝓃∗

 Theoretical error estimates from the GPA

 𝓃𝓃∗ ≪ 𝓃𝓃 for full particle-averaging

• 1/𝐿𝐿 correction for the finite-system-size effect on the diffusion coefficient

 Microscopic interpretation by using the tail of VACF

 In multi-species systems, the same correction applies to each species.

• Finite-system-size effects on the shear viscosity
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LAMMPS Tutorial

In the tutorial session, I will demonstrate:

How to calculate physical quantities (on the fly) from LAMMPS.

MD Simulator Trajectory Post-processing Final results

 Dumping trajectory may not always be a good idea.

 Hard-coding may be required.

Traditional MD simulation steps

LAMMPS is a very powerful tool for particle-based simulation methods.
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