# Quantifying Uncertainties in Equilibrium Particle Dynamics Simulations

#### Changho Kim ( 김창호 / 金彰鎬 )

- Division of Applied Mathematics, Brown University, USA
- Center for Computational Sciences and Engineering (CCSE), Lawrence Berkeley National Laboratory, USA



LJ fluid



Ethylene carbonate liquid



Ar/Kr mixture



FENE chains in a WCA fluid



 $H_2O + NaCl$ 

# **Underlying Idea**



large system

Simulating an *ensemble* of a molecular system

It is time to analyze uncertainties of particle-based methods.



# Acknowledgements

- US Army Research Laboratory
  - Alliance for Computationally-guided Design of Energy Efficient Electronic Materials (CDE3M)
  - > Dr. Oleg Borodin
- US Department of Energy
  - CM4 center: Collaboratory on Mathematics for Mesoscopic Modeling of Materials (PI: Prof. Karniadakis)
  - INCITE project: computing time for clusters at the Argonne / Oak
     Ridge National Laboratories

# **Equilibrium MD Simulation**



• Periodic boundary conditions





finite-system-size effects

# **Uncertainty Quantification for MD**

• Parameter uncertainty quantification

#### force field $\rightarrow$ material properties

- Two types of **intrinsic uncertainty in MD simulation results** 
  - Statistical errors
  - Finite-system-size effects



# Approaches

- Large-sized ensemble MD runs
  - Accurate statistics
  - Direct evaluation of statistical errors



- Analysis (theoretical approaches)
  - Statistical mechanics
  - Probability theory
  - Continuum mechanics

# Outline

Part 1. Statistical errors in the estimation of self-diffusion coefficients

- VACF method versus MSD method
- > Part 1.1. Time-averaging and ensemble-averaging
- ➢ Part 1.2. Particle-averaging

Part 2. Finite-system-size corrections for self-diffusion coefficients

Part 3. Estimation of shear viscosity

#### Part 1.

# Statistical Errors in the Estimation of Self-Diffusion Coefficients

- 0. Background and motivating questions
- 1. Ensemble-averaging and time-averaging
- 2. Particle-averaging

# **Self-Diffusion Coefficient**

• Definition through the mean-square-displacement (MSD)

$$D = \lim_{t \to \infty} \frac{\langle [\mathbf{x}(t) - \mathbf{x}(0)]^2 \rangle}{6t}$$



• Alternatively, through the velocity autocorrelation function (VACF)

$$D = \frac{1}{3} \int_0^\infty \langle \mathbf{v}(0) \cdot \mathbf{v}(t) \rangle dt$$

# Statistical Errors in VACF, MSD, and D(t)



- 1. Are the two methods equivalent?
- 2. Can we calculate the error bars of D(t) from those of VACF or MSD?
- 3. Can we estimate the error bars from VACF under reasonable assumptions? <sup>10</sup>

## **Three Types of Averaging Procedures**

- Ensemble-averaging over (i.i.d.) samples
- Time-averaging over trajectory
- Particle-averaging over identical particles

# **Ensemble-Averaging**

$$\langle v_1(0)v_1(t)\rangle = \int v_1v_1(t)\rho(x_1,\cdots,x_N,v_1,\cdots,v_N)dx_1\cdots dx_Ndv_1\cdots dv_N$$

$$\frac{1}{N_{sample}} \sum_{i=1}^{N_{sample}} v_1^{(i)}(0) v_1^{(i)}(t)$$



✤ Generating an equilibrium sample is usually time-consuming.



★ Calculating  $\langle v_1(0)v_1(n\Delta t)\rangle$  ( $0 \le n \le n_{max}$ ) on the fly requires storing trajectory of length  $n_{max} + 1$ .

$$\langle v_1(0)v_1(t)\rangle = \lim_{\mathcal{T}\to\infty} \frac{1}{\mathcal{T}} \int_0^{\mathcal{T}} v_1(t')v_1(t'+t)dt'$$

Ergodic hypothesis

# **Particle-Averaging**

If there are  $N_{particle}$  identical particles in the system, one can also take particleaveraging over *n* particles ( $1 \le n \le N_{particle}$ ).

$$\langle v(0)v(t)\rangle = \frac{1}{n} \sum_{i=1}^{n} \langle v_i(0)v_i(t)\rangle$$





Three types of averaging procedures can be combined.

#### **Scaling Behavior of Statistical Error**

$$\langle \varepsilon^2(t) \rangle \approx \frac{a(t)}{\mathcal{NTn}^*}$$

- $\mathcal{N}$  = number of independent trajectories (ensemble-averaging)
- T =length of a trajectory (time-averaging)
- $n^*$  = effective number for particle averaging
  - ▶ For sufficiently small  $n, n^* \approx n$
  - $\succ$  Otherwise,  $n^* \ll n$

# Part 1.1. Ensemble Averaging and Time Averaging

- Theoretical error estimates
- MD simulation results: LJ fluid / EC liquid
- Further analysis: Langevin equation driven by GWN/PWSN

Kim, Borodin, and Karniadakis, "Quantification of Sampling Uncertainty for Molecular Dynamics Simulation: Time-dependent Diffusion Coefficient in Simple Fluids", in press, *J. Comput. Phys.* (http://dx.doi.org/10.1016/j.jcp.2015.09.021) 16

# **Main Results**

For both VACF and MSD methods, the standard errors of *D*(*t*) are the same.➢ For ensemble-averaging,

$$\langle \varepsilon^2(t) \rangle = \frac{1}{\mathcal{N}} \int_0^t dt' \int_0^t dt'' \left[ f(0) f(t'' - t') + f(t') f(t'') \right]$$

For time-averaging,

$$\langle \varepsilon^{2}(t) \rangle = \frac{1}{\mathcal{T}} \int_{-\infty}^{\infty} d\alpha \left[ f(\alpha) \int_{0}^{t} dt' \int_{\alpha}^{\alpha+t} dt'' f(t'-t'') + \int_{\alpha}^{\alpha+t} f(t') dt' \int_{\alpha-t}^{\alpha} f(t') dt' \right]$$
  
where  $f(t)$  is the VACF.

- \* Once the VACF has been (roughly) estimated, the standard errors of D(t) as well as the VACF and the MSD are available.
- \* These results are obtained under the assumption that the velocity process v(t) is a Gaussian process (GPA = Gaussian process approximation).

#### **Derivation, Step 1: Error Correlation Functions**



$$D(t) = \frac{1}{2} \frac{d}{dt} \langle [x(t) - x(0)]^2 \rangle \longrightarrow \langle \varepsilon_D^2(t) \rangle = \dots$$

# **Derivation, Step 2: GPA**



- ★ Error correlation function  $\langle \varepsilon_{VACF}(t')\varepsilon_{VACF}(t'')\rangle$  is expressed in terms of four time correlation function  $\langle v(0)v(t_1)v(t_2)v(t_3)\rangle$ .
- The GPA of x(t) is implied by that of v(t).

#### Large-Sized-Ensemble MD Run: LMP\_ENS



Typical size of ensemble  $\sim 10^4$  samples

 $\succ$  Statistical errors are suppressed by factor of 100.

Computing time provided by INCITE project: BG/Q machine at Argonne Lab

# Sampling Size and Quality of MD Data



Sample size increases up to by factor of  $2^{18}$ Standard error decreases up to by factor of  $2^9 = 512$ 

#### **Self-Diffusion of a Solvent Particle**



#### **Tracer-diffusion of a Colloidal Particle**



VACF (MD) MSD (MD) Theory

## The Validity of GPA



#### **MD Simulation of EC Liquid**



- Quantum-chemistry based, highly transferable atomistic force field
- APPLE&P (Atomistic Polarizable Potential for Liquids, Electrolytes, and Polymers) developed by Oleg Borodin

#### **MD** Results for EC System



# **Non-Gaussianity Indicator**



 $\xi(t)$  is either Gaussian white noise (GWN) or Poissonian white shot noise (PWSN).



Deviations from theoretical error estimates are proportional to the fourth-order cumulant  $\kappa[\xi(t_1), \xi(t_2), \xi(t_3), \xi(t_4)]$ . 27

# Part 1.2. Particle-Averaging

# **Observation:** LJ Fluid ( $N_{\text{atom}} = 2048$ )



Otherwise,  $n^* \ll n$ 

• GPA of  $(v_1(t), v_2(t), \dots, v_N(t)) \rightarrow \text{Almost } 1/n \text{ scaling}$ ➢ Failure of multi-particle GPA

## Formulation

• Quantity  $A_i$  obtained from particle i

Particle average (of size *n*): 
$$X_n = \frac{1}{n} \sum_{i=1}^n A_i$$

• Since the particles are identical, we have

 $\langle A_i \rangle = \mu$  $Var[A_i] = \sigma^2$  $Cov[A_i, A_j] = \zeta \ (i \neq j)$ 

✤ In fact,  $\{A_i\}$  are exchangeable random variables.

#### **Results**

$$\operatorname{Var}[X_n] = \frac{\sigma^2}{n} + \frac{n-1}{n}\zeta = \frac{\sigma^2}{n^*}$$

• If 
$$(n-1)\zeta \ll \sigma^2$$
,  $\operatorname{Var}[X_n] \approx \frac{\sigma^2}{n}$ 

$$n^* = \frac{n}{1 + (n-1)\frac{\zeta}{\sigma^2}}$$

- $\zeta \to 0$  (uncorrelated case):  $n^* \to n$
- $\zeta \to \sigma^2$  (completely correlated case): $n^* \to 1$

For the investigation of the reduction of statistical errors due to particle averaging, we need to investigate the corvariance  $\zeta$  (or the correlation coefficient  $\zeta/\sigma^2$ ).

# Correlation Coefficient $\zeta(t)/\sigma^2(t)$



# Effective Number of Particle Averaging $n^*$



 Dependences on various averaging parameters are under investigation.

#### **Practical implications**

Full particle-averaging may be very expensive (especially, for on-the-fly calculation).

- If trajectory computation is expensive, use full particle-averaging.
- Otherwise, reduce the size of particleaveraging and calculate a longer trajectory.

# **Summary of Part 1**

#### 1. Equivalence of the VACF and MSD methods



2. Scaling behavior of statistical error

$$\langle \varepsilon^2(t)\rangle\approx \frac{a(t)}{n^*\mathcal{NT}}$$

- Under the GPA, *a*(*t*) can be expressed in terms of ordinary (i.e., two-time) correlation functions.
- The GPA works very well for various systems.
- *n*<sup>\*</sup> ≪ *n* for full particle-averaging

#### Part 2.

# Finite-System-Size Correction on Diffusion Coefficient

- 1. Correction formula
- 2. Microscopic interpretation
- 3. Multi-species systems

## **Finite-System-Size Correction**



$$D_{\infty} = D_L + \frac{2.837k_BT}{6\pi\eta L}$$

- Under periodic boundary conditions
- L =simulation box size
- $\eta$  = shear viscosity

Derived from continuum theory
Hasimoto, *J. Fluid. Mech.* 5, 317 (1959).
Dünweg and Kremer, *J. Chem. Phys.* 99, 6983 (1993).
Yeh and Hummer, *J. Phys. Chem.* B 108, 15873 (2004).

## **Connection to the Tail of VACF**

$$D = \frac{1}{3} \int_0^\infty \langle \mathbf{v}(0) \cdot \mathbf{v}(t) \rangle dt$$

Algebraic tail of the VACF (also derived from continuum theory)

$$\langle \mathbf{v}(0) \cdot \mathbf{v}(t) \rangle = \frac{2k_B T}{3m\rho} \frac{1}{[4\pi(D+\nu)]^{3/2}} t^{-3/2} \quad (t \to \infty)$$



# **Long-time Tail of VACF**



For a larger system, the diffusion coefficient should be estimated at a larger time.



# **Corrections in Multi-Species Systems**

$$D_{\infty} = D_L + \left(\frac{2.837 k_B T}{6\pi\eta}\right) \frac{1}{L}$$

#### **Question**

- Will the same finite-system-size correction be applied to the self-diffusion coefficient of each species?
- In other words, will the value of the slope (with respect to  $L^{-1}$ ) be the same?



Ar/Kr mixture



FENE chains in a WCA fluid





Although the slopes for the finite-system-size effects on  $D_{Ar}$  and  $D_{Kr}$  are different from the theoretical prediction, the values of the two slopes are very similar. 41

#### **FENE Chains in a WCA Fluid**



42

#### $H_2O + NaCl$ (0.87 M, 300K, 1 atm)



Despite quite different values of the three self-diffusion coefficients, their slopes for the finite-system-size correction are very similar.

#### Part 3.

#### **Estimation of Shear Viscosity**

- 1. Equilibrium versus non-equilibrium MD estimation
- 2. Finite-system-size effects

#### **Estimating Viscosity from Equilibrium MD**

Green-Kubo formula

$$\eta = \frac{V}{k_B T} \int_0^\infty \langle p_{xy}(0) p_{xy}(t) \rangle dt$$

• Perturbation to the equilibrium system

$$\dot{\mathbf{x}}_i = \mathbf{v}_i + \gamma y_i \hat{\mathbf{e}}_x$$

$$m\dot{\mathbf{v}}_i = \mathbf{F}_i - \gamma m v_{y,i} \hat{\mathbf{e}}_x$$

• Linear response theory  $(\gamma \rightarrow 0)$ 

$$\langle p_{xy}(t) \rangle_{\text{shear}} = -\frac{\gamma V}{k_B T} \int_0^t \langle p_{xy}(0) p_{xy}(t') \rangle dt'$$

• Definition of shear viscosity

$$\eta = -\lim_{t \to \infty} \frac{\left\langle p_{xy}(t) \right\rangle_{\text{shear}}}{\gamma}$$

#### Non-Equilibrium MD Simulation (Poiseuille Flow)

- Position-dependent external force
- Steady-state velocity profile  $\rightarrow$  shear viscosity
- Under periodic boundary conditions



Backer et al, J. Chem. Phys. 122, 154503 (2005).

# Comparison

- Non-equilibrium MD
  - $\succ$  (+) Direct method
  - $\succ$  (+) Good signal to noise ratio
  - ➤ (-) Unrealistically large shear rate
  - $\succ$  (–) Use of thermostat
- Equilibrium MD
  - $\succ$  (+) theoretically sound
  - ➤ (-) large statistical error
  - ✤ The level of statistical error can be estimated by our approach.

#### **Finite-System-Size Effects**



48

# Summary

- Equivalence of the VACF and MSD methods for the self-diffusion coefficient
- Scaling behavior of the statistical error

$$\langle \varepsilon^2(t) \rangle \approx \frac{a(t)}{\mathcal{NTn}^*}$$

- Theoretical error estimates from the GPA
- ▶  $n^* \ll n$  for full particle-averaging
- 1/L correction for the finite-system-size effect on the diffusion coefficient
  - Microscopic interpretation by using the tail of VACF
  - ➢ In multi-species systems, the same correction applies to each species.
- Finite-system-size effects on the shear viscosity

# **LAMMPS** Tutorial



LAMMPS is a very powerful tool for particle-based simulation methods.

In the tutorial session, I will demonstrate:

How to calculate physical quantities (on the fly) from LAMMPS.

# THANK YOU!!!