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Part 1.
Quick Review on Brownian Motion

• MSD / VACF / FACF

• Basic relations

• Einstein model

• Langevin model



MSD, VACF, FACF
Mean-squared displacement

𝐗 𝑡 − 𝐗 0 2

Velocity autocorrelation function

𝐕 0 ∙ 𝐕 𝑡

Force autocorrelation function

𝐅 0 ∙ 𝐅 𝑡



Basic Relations

𝐴 0 𝐵 𝑡 = 𝐴 −𝑡 𝐵 0

𝐴 0 ሶ𝐵 𝑡 = − ሶ𝐴 0 𝐵 𝑡

𝐶 𝑡 = 𝐕 0 ∙ 𝐕 𝑡

ሶ𝐶 𝑡 =
1

𝑀
𝐕 0 ∙ 𝐅 𝑡

ሷ𝐶 𝑡 = −
1

𝑀2 𝐅 0 ∙ 𝐅 𝑡

𝑑

𝑑𝑡
𝐗 𝑡 − 𝐗 0 2 = 2න

0

𝑡

𝐶 𝑡′ 𝑑𝑡′

𝐶 0 = 𝐕 ∙ 𝐕 =
𝑑𝑘B𝑇

𝑀

 ሶ𝐶 0 =
1

𝑀
𝐕 ∙ 𝐅 = 0

Equipartition theorem

𝐷 =
1

𝑑
න
0

∞

𝐶 𝑡′ 𝑑𝑡′

Derivatives of VACF

MSD and VACF



Einstein Model (1905) and MSD

𝑑

𝑑𝑡
𝜌 𝐱, 𝑡 = 𝐷𝛻2𝜌 𝐱, 𝑡

𝜌 𝐱, 0 = 𝛿 𝐱

𝐗 𝑡 − 𝐗 0 2 = 2𝑑𝐷𝑡 𝐗 𝑡 = 2𝐷𝐖 𝑡

github.com/matthewfieger

𝐖 𝑡 : Wiener process 
(continuous but non-differentiable)
Velocity is not well-defined!

Diffusion equation

𝐷 = lim
𝑡→∞

𝐗 𝑡 − 𝐗 0 2

2𝑑𝑡

Diffusion coefficient

𝐷 =
𝑘B𝑇

𝛾
=

𝑘B𝑇

6𝜋𝜂𝑅

Stokes-Einstein relation



Langevin Model (1908) and VACF

𝑀 ሶ𝐕 𝑡 = −𝛾𝐕 𝑡 + 2𝑘B𝑇𝛾 ሶ𝐖 𝑡

𝐶 𝑡 =
𝑑𝑘B𝑇

𝑀
𝑒−

𝛾
𝑀𝑡

• 𝛾 = friction coefficient

• Fluctuation-dissipation relation

• 𝐷 =
1

𝑑
0׬
∞
𝐶 𝑡 𝑑𝑡 =

𝑘B𝑇

𝛾

Exponential decay of VACF

Deviations

• At short time: zero slope at 𝑡 = 0

 microscopic origin

• At long time: algebraic decay 𝒕−𝒅/𝟐

(Alder and Wainwright, 1970)

 hydrodynamic origin

𝐯 0



Part 2.
Generalized Langevin Equation

• Heuristic explanation of Langevin equation from GLE

• MZ formalism

• Derivation of FDT

• Volterra equation

• MD observations: MF, VACF, FACF



From Microscopic To Mesoscopic

𝑀 ሶ𝐕 𝑡 = −෍

𝑖

𝛁𝑈 𝐗 𝑡 − 𝐱𝑖 𝑡

?

𝑀 ≫ 𝑚

𝑀 ሶ𝐕 𝑡 = −𝛾𝐕 𝑡 + 2𝑘𝐵𝑇𝛾 ሶ𝐖𝑡

Langevin Equation

On the time scale of Brownian particle 𝑡Br =
𝑀

𝑚
𝑡

𝑀 ሶ𝐕 𝑡 = −න
0

𝑡

𝐾 𝑡′ 𝐕 𝑡 − 𝑡′ 𝑑𝑡′ + 𝐅+ 𝑡

Generalized Langevin Equation 
(GLE)

MZ formalism

1

2
𝑚 𝐯2 =

1

2
𝑀 𝐕2



Generalized Langevin Equation (GLE)

𝑀 ሶ𝐕 𝑡 = −න
0

𝑡

𝐾 𝑡′ 𝐕 𝑡 − 𝑡′ 𝑑𝑠 + 𝐅+ 𝑡

Fluctuating forceMemory function
(MF)

cf. Langeivn equation

𝑀 ሶ𝐕 𝑡 = −𝛾𝐕 𝑡 + 2𝑘𝐵𝑇𝛾 ሶ𝐖 𝑡

1. Fluctuating force 𝐅+ 𝑡 behaves like a random force.

Fluctuation-dissipation relation

2. It has a non-zero correlation time.

3. Langevin equation is obtained if 𝐾 𝑡 = 2γ𝛿 𝑡 .

 on the Brownian time scale 𝑡Br as 𝑀 → ∞

𝑡Br

𝐾

4. Markovian approximation

0׬
𝑡
𝐾 𝑡 − 𝑡′ 𝐕 𝑡′ 𝑑𝑡′ ≈ 0׬

∞
𝐾 𝑡′ 𝑑𝑡′ 𝐕 𝑡 = 𝛾𝐕 𝑡

𝐕 0 ∙ 𝐅+ 𝑡 = 0

𝐅+ 0 ∙ 𝐅+ 𝑡 = 𝑑𝑘B𝑇 𝐾 𝑡



Mori-Zwanzig Formalism

For a phase variable 𝐀, consider the time evolution equation of 𝐀 𝑡 :
𝑑

𝑑𝑡
𝐀 𝑡 = 𝑖ℒ𝐀 𝑡 .

By using (Mori’s) projection operators,

𝒫 ⋆ = ⋆ 𝐀T 𝐀𝐀T
−1

and 𝒬 = 𝐼 − 𝒫,

the GLE is obtained as follows:

𝐀

𝐁

𝒫𝐁

𝒬𝐁

Mori, “Transport, Collective Motion, and Brownian Motion”, Progr. Theoret. Phys. 33, 423 (1965).

𝑖𝛀 = 𝑖ℒ𝐀𝐀T 𝐀𝐀T
−1

𝐅+ 𝑡 = 𝑒𝒬𝑖ℒ𝑡𝒬𝑖ℒ𝑡𝐀 𝐊 𝑡 = 𝐅+ t 𝐅+ T 0 𝐀𝐀T
−1

effective force frictional memory random force

𝑑

𝑑𝑡
𝐀 𝑡 = 𝑖𝛀 𝐀 𝑡 − න

0

𝑡

𝐊 𝑡′ 𝐀 𝑡 − 𝑡′ 𝑑𝑡′ + 𝐅+ 𝑡

Having an appealing form as well as being exact 
but impossible to directly be estimated



Mori vs. Zwanzig

𝐅 𝑡 |𝐕 0 ≈
𝐕 0 ∙ 𝐅 𝑡

𝐕 ∙ 𝐕
𝐕 0

Mori Zwanzig

Projection operator
Linear projection

(simplest)
Conditional expectation

(most accurate)

Effective force Only linear (-) General form (+)

Memory term Convolution (+) General form (-)

Conditional expectation

→ General function of 𝐕 0

𝑑

𝑑𝑡
𝐲 𝑡 = 𝐟eff 𝐲 𝑡 − න

0

𝑡

𝐊 𝑡′; 𝐲 𝑡 𝐲 𝑡 − 𝑡′ 𝑑𝑡′ + 𝐟+ 𝑡; 𝐲 𝑡 (? )

Linear projection



Derivation of FDT

By multiplying 𝐅 0 = 𝐅+ 0 to the GLE and taking average:

𝐅 0 ∙ 𝐅 𝑡 = 0׬
𝑡
𝐾 𝑡′ 𝐕 0 ∙ 𝐅 𝑡 − 𝑡′ 𝑑𝑡′ + 𝐅+ 0 ∙ 𝐅+ 𝑡

By multiplying 𝐕 0 to the GLE and taking average:

𝐕 0 ∙ 𝐅 𝑡 = 0׬−
𝑡
𝐾 𝑡′ 𝐕 0 ∙ 𝐕 𝑡 − 𝑡′ 𝑑𝑡′

By multiplying −𝑀 and differentiating w.r.t. 𝑡: 

𝐅 0 ∙ 𝐅 𝑡 = 𝑀 𝐕 ∙ 𝐕 𝐾 𝑡 + 0׬
𝑡
𝐾 𝑡′ 𝐕 0 ∙ 𝐅 𝑡 − 𝑡′ 𝑑𝑡′

Assumption 1. 𝑀 ሶ𝐕 𝑡 = 0׬−
𝑡
𝐾 𝑡′ 𝐕 𝑡 − 𝑡′ 𝑑𝑡′ + 𝐅+ 𝑡

Assumption 2. 𝐕 0 ∙ 𝐅+ 𝑡 = 0

Conclusion: 𝐅+ 0 ∙ 𝐅+ 𝑡 = 𝑀 𝐕 ∙ 𝐕 𝐾 𝑡



Volterra Equation

𝑀 ሶ𝐶 𝑡 = −න
0

𝑡

𝐾 𝑡′ 𝐶 𝑡 − 𝑡′ 𝑑𝑡′

From MD calculation of VACF, MF can be estimated.

 Shin, Kim, Talkner, and Lee, “Brownian motion from molecular dynamics”, 

Chem. Phys. 375, 316 (2010)

MF

MSD

VACF

FACF

GLE MD

MSD, VACF, FACF, MF contain equivalent information. 



Increasing 𝑴

𝐅 0 ∙ 𝐅 𝑡 ≈ 𝐅+ 0 ∙ 𝐅+ 𝑡 (only) for small 𝑡

𝐅 0 ∙ 𝐅 𝑡 𝐅+ 0 ∙ 𝐅+ 𝑡



Large Brownian Particle in a WCA Fluid 
𝜎Br−fl

𝜎fl−fl
= 5, 

𝜀Br−fl

𝜀fl
= 1, 𝜌fl = 0.20, 𝑘B𝑇 = 2.07

𝜌Br ≫ 𝜌fl

𝜌Br ≈ 𝜌fl

𝜌Br ≪ 𝜌fl



Part 3.
Subtle Issues in Memory Function Approach

• Markovian approximation

 Infinite-mass limit, Limit MF, Kirkwood formula

• Long-time tail of MF

• Generation of trajectory from GLE



Limit Memory Function

𝐾0 𝑡 = lim
𝑀→∞

𝐾 𝑡

𝐾0 𝑡 =
1

𝑑𝑘𝐵𝑇
𝐅0 0 ∙ 𝐅0 𝑡

Frozen dynamics

න
0

𝑡

𝐾 𝑡 − 𝑡′ 𝐕 𝑡′ 𝑑𝑡′ ≈ න
0

∞

𝐾0 𝑡′ 𝑑𝑡′ 𝐕 𝑡 = 𝛾𝐕 𝑡

Markovian approximation
(Near the infinite-mass limit)

𝐅0 0 ∙ 𝐅0 𝑡 = lim
𝑀→∞

𝐅 0 ∙ 𝐅 𝑡 = lim
𝑀→∞

𝐅+ 0 ∙ 𝐅+ 𝑡′

𝜏 Underresolving 𝑡 ≲ 𝜏



Kirkwood Formula (1946)

𝛾 =
1

𝑑𝑘𝐵𝑇
න
0

∞

lim
𝑀→∞

𝐅 0 ∙ 𝐅 𝑡 𝑑𝑡

𝛾 = න
0

∞

𝐾0 𝑡 𝑑𝑡 =
1

𝑑𝑘𝐵𝑇
න
0

∞

F0 0 ∙ F0 𝑡 𝑑𝑡′

𝛾 ≈ lim
𝑀→∞

1

𝑑𝑘𝐵𝑇
න
0

∞

𝐅 0 ∙ 𝐅 𝑡 𝑑𝑡 = − lim
𝑀→∞

lim
𝑡→∞

𝑀

𝑑𝑘𝐵𝑇
𝐕 0 ∙ 𝐅 𝑡 = 0

?

න
0

𝑡

𝐅 0 ∙ 𝐅 𝑡′ 𝑑𝑡′

න
0

𝑡

𝐅+ 0 ∙ 𝐅+ 𝑡′ 𝑑𝑡′

(in the context of MF approach)



Long-Time Tail
MF does not decay rapidly to zero → Failure of Markovian approximation?

VACF ≈ (positive) 𝑡−𝑑/2

as 𝑡 → ∞

MF ≈ (negative) 𝑡−𝑑/2

as 𝑡 → ∞

Boussinesq-Basset force

Time scale for the onset of the algebraic decay depends on the density ratio 𝜌Br/𝜌.

Corngold
(1972)

𝐅BB 𝑡 = −6𝜋𝜂𝑅𝐕 𝑡 −
2

3
𝜋𝑅3𝜌 ሶ𝐕 𝑡

−6𝑅2 𝜋𝜂𝜌න
0

𝑡 ሶ𝐕 𝑡′

𝑡 − 𝑡′
𝑑𝑡′

Bian, Kim, Karniadakis, “111 Yeas of Brownian Motion” (tutorial review), in revision, Soft Matter.



Approximating fluctuating force 
by Gaussian noise 

Green: Gaussian distribution
Σ/𝜎 =1 (blue), 5 (red), 10 (black) 

𝑀/𝑚 = 100

In general, 𝐅+ is not a Gaussian process.

All resulting second moment quantities 

such as MSD, VACF, FACF will be the same 

as the original dynamics.

However, not for higher moments. 

Density 0.8

Density 0.4

Distribution of 𝑭+

GLE approach

1. Generate a Gaussian noise process 𝐅G
+ 𝑡

satisfying

𝐅G
+ 0 ∙ 𝐅G

+ 𝑡 = 𝑑𝑘B𝑇 𝐾 𝑡

2. Calculate the GLE:

𝑀 ሶ𝐕 𝑡 = −න
0

𝑡

𝐾 𝑡′ 𝐕 𝑡 − 𝑡′ 𝑑𝑡′ + 𝐅𝐺
+ 𝑡



Part 4. Microscopic Theory of 
Finite-Mass Brownian motion 

• MF expansion for finite mass 𝑴

• Approximating VACF from MF expansion

• Microscopic origin of MF expansion



MF Expansion for Finite Mass 𝑴

𝐾 𝑡 ≈ 𝐾0 𝑡 +
1

𝑀
𝐾1 𝑡

 Some of higher-order terms contain scaled time.



How Different is the VACF from the Langevin Case?

𝐾 𝑡 ≈ 𝐾0 𝑡 +
1

𝑀
𝐾1 𝑡

𝐾 𝑡 = 𝛾𝛿 𝑡 𝐶 𝑡 =
𝑑𝑘B𝑇

𝑀
𝑒−

𝛾
𝑀𝑡

𝑀 ሶ𝐶 𝑡 = −න
0

𝑡

𝐾 𝑡′ 𝐶 𝑡 − 𝑡′ 𝑑𝑡′

𝐾0 𝑡

𝐾1 𝑡

𝜏0

𝜏1

𝜸 = න
𝟎

𝝉𝟎

𝑲𝟎 𝒕 𝒅𝒕

𝜻 = න
𝟎

𝝉𝟏

𝑲𝟏 𝒕 𝒅𝒕

𝑡 𝜏0

𝛾

𝜶 = 𝜸𝝉𝟎 −න
𝟎

𝝉𝟎

𝑮𝟎 𝒕 𝒅𝒕

𝑡

𝐺0 𝑡 = න
0

𝑡

𝐾0 𝑠 𝑑𝑠

𝛼 = Effect of microscopic structure of 𝐾0 𝑡

𝜁 = Effect of finite-mass correction 

Normalized VACF

𝑡



Approximating VACF from MF

For short time 𝒕 ≲ 𝝉𝟎: 𝐶 𝑡 ≈
𝑑𝑘𝐵𝑇

𝑀
exp −

1

𝑀
න
0

𝑡

𝑑𝑡′න
0

𝑡′

𝑑𝑡′′ 𝐾 𝑡′′

𝐶 𝑡 ≈
𝑑𝑘𝐵𝑇

𝑀
1 +

𝜶

𝑴
exp −

𝛾

𝑀
1 +

𝜶 + 𝜻/𝜸

𝑴
𝑡For long time 𝒕 ≳ 𝝉𝟎:

𝑀 𝑠 ሚ𝐶 𝑠 − 𝐶 0 = − ሚ𝐶 𝑠 ෩𝐾 𝑠

ሚ𝐶 𝑠 =
𝑘B𝑇

𝑀𝑠 + ෩𝐾 𝑠
≈ ሚ𝐶0 𝑠 ෍

𝑛=0

∞

−
෩𝐾1 𝑠 ሚ𝐶0 𝑠

𝑘B𝑇𝑀

𝑛

Reference: ሚ𝐶0 𝑠 =
𝑘B𝑇

𝑀𝑠 + ෩𝐾0 𝑠

Derivation: use the Laplace transform

𝑀 ሶ𝐶 𝑡 ≈ −න
0

𝑡

𝐾 𝑡′ 𝑑𝑡′ 𝐶 𝑡Derivation:

Kim and Karniadakis, “Time correlation functions of Brownian motion and evaluation of friction 
coefficient in the near-Brownian-limit regime”, Multiscale Model. Sim. 12, 225 (2014) 



“Taylor Expansion” in MD

Frozen dynamics

𝐗0 𝑡 = 𝐗 0

𝐕0 𝑡 = 0

𝐅0 𝑡

Constant-velocity dynamics

𝐗1 𝑡 = 𝐗 0 + 𝑡𝐕 0

𝐕1 𝑡 = 𝐕 0

𝐅1 𝑡

Full dynamics 

Finite mass 𝑀

𝐗 𝑡 , 𝐕 𝑡

𝐅 𝑡

𝐅 𝑡 = 𝐅0 𝑡 + 𝐅1 𝑡 − 𝐅0 𝑡 + 𝐅 𝑡 − 𝐅1 𝑡

= O 1 + O
1

𝑀
+ O

1

𝑀

Thermal noise Friction force O 𝑉 0 =
1

𝑀



Microscopic Origin of MF Expansion 

 𝐗1 𝑡 − 𝐗0 𝑡 = 𝑡𝐕 0

𝐅1 𝑡 − 𝐅0 𝑡 ≈ 𝐀1 𝑡 𝐕 0 + 𝐀2 𝑡 𝐕2 0 + 𝐀3 𝑡 𝐕3 0

 𝐗 𝑡 − 𝐗1 𝑡 =
1

𝑀
0׬
𝑡
𝑑𝑡′ 0׬

𝑡′
𝑑𝑡′′ 𝐅 𝑡′′

𝐅 𝑡 − 𝐅1 𝑡 ≈
1

𝑀
𝐁1 𝑡 + 𝐁2 𝑡 𝐕 0

𝐾 𝑡 ≈ 𝐾0 𝑡 +
1

𝑀
𝐾1 𝑡

 Θ denotes the conditional average given 𝐕 0 . 



Part 5. Brownian motion
in a confined Rayleigh gas model

Phys. Rev. Lett. 103, 248303 (2009)



Rayleigh Gas Model

Brownian motion in an ideal gas 

 No hydrodynamic interaction from the surrounding fluid

 Friction is proportional to 𝑅𝑑−1

Oil drop experiment (en.wikipedia.org)

 In the frozen dynamics, the dynamics of each gas particle becomes decoupled.

 Analytic results are available.

C. Kim and G. Karniadakis, “Microscopic theory of Brownian motion revisited: The 
Rayleigh model”, Phys. Rev. E 87, 032129 (2013) 



Reduced Diffusivity

Let’s investigate 𝛾 𝑡 = 0׬
𝑡
𝐾𝑥 𝑡′ 𝑑𝑡′.



Brownian particle under a harmonic potential

GLE: Apply the Mori projection technique to 𝑋𝑑 , 𝑉1, ⋯ , 𝑉𝑑

FDT: the same as the unbounded case

Kim and Karniadakis, “Brownian Motion of a Rayleigh Particle Confined in a Channel: 
A Generalized Langevin Equation Approach”, J .Stat. Phys. 158, 1100 (2015)



Second Peak in MF



VACF
No wall



Summary
• MF (or 𝐅+ 0 ∙ 𝐅+ 𝑡 ) contains equivalent information to MSD, VACF 

and FACF.

• MF can be calculated from VACF through the Volterra equation, and 

vice versa.

• Compared to VACF, MF does not drastically change as 𝑀 changes.

𝐾 𝑡 ≈ 𝐾0 𝑡 +
1

𝑀
𝐾1 𝑡

• At short time, 𝐅+ 0 ∙ 𝐅+ 𝑡′ ≈ 𝐅 0 ∙ 𝐅 𝑡 ≈ 𝐅0 0 ∙ 𝐅0 𝑡

• Compared to FACF, 𝐅+ 0 ∙ 𝐅+ 𝑡′ has a convergent non-zero integral.

• Markovian approximation: 𝛾 ≈ 0׬
∞
𝐾 𝑡 𝑑𝑡 =

1

𝑑𝑘𝐵𝑇
0׬
∞
𝐅+ 0 ∙ 𝐅+ 𝑡 𝑑𝑡′

• Despite the small value, the tail of MF is important; its time integral 

matters.

• For both microscopic and hydrodynamic reasons, the short- and long-

time behaviors of VACF is different from the algebraic decay.



Observation of Vortex Formation from 
Equilibrium/Non-Equilibrium MD Simulations

and the Algebraic Decay of VACF

Collaboration with

Kyeonghwan Han, Prof. Eok Kyun Lee (Chemistry, KAIST)

Prof. George Karniadakis (Applied Mathematics, Brown University)



Vortex Formation
𝐮 𝐫, 0 𝑣0 = 𝑣0ො𝒆𝑥𝛿(𝐫) 𝐮 𝐫, 𝑡 𝑣0

time 𝑡

From equilibrium and non-equilibrium MD simulations, we calculate

𝐮 𝐫, 𝑡 = න𝐮 𝐫, 𝑡 𝑣0 𝑓0 𝑣0 𝑑𝑣0

We also calculate
𝐮tr 𝐫, 𝑡 : velocity field of the tracer particle

𝜌 𝐫, 𝑡 : number density of the fluid

𝜌tr 𝐫, 𝑡 : number density of the tracer particle



From Equilibrium MD Simulation



From Non-Equilibrium MD Simulation



Helmholtz decomposition

𝐮 = 𝐮⊥ (vortex) + 𝐮∥ (acoustic wave) 

2D WCA fluid at 𝑡 = 4

(2048 particles, density 0.6, temperature 1 in LJ units)





Finite Size Effects

𝑁 = 512

𝑁 = 1024

𝑁 = 2048

𝑡 = 4.5 𝑡 = 6.5 𝑡 = 9.0𝑡 = 2.0

𝐮∥



Heuristic Derivation of Algebraic Decay of VACF

𝐯 0 ∙ 𝐯 𝑡 =
𝑑 − 1 𝑘B𝑇

𝑚𝜌

1

4𝜋 𝐷 + 𝜈 3/2
𝑡−𝑑/2 𝑡 → ∞

𝜕𝑃tr 𝐫, 𝑡

𝜕𝑡
= 𝐷𝛻2𝑃tr 𝐫, 𝑡

𝜕𝐮⊥ 𝐫, 𝑡 𝐯0
𝜕𝑡

= −𝜈 𝛻 × 𝛻 × 𝐮⊥ 𝐫, 𝑡 𝐯0

𝐯 𝑡 𝐯0 = න𝑑𝐫𝜌tr 𝐫, 𝑡 𝐯0 𝐮tr 𝐫, 𝑡 𝐯0 ≈ න𝑑𝐫𝑃tr 𝐫, 𝑡 𝐮⊥ 𝐫, 𝑡 𝐯0

No dependence on 𝐯0? 

𝐮tr ≈ 𝐮 ≈ 𝐮⊥?

Compare the VACFs calculated from ׬𝑑𝐫 𝜌tr 𝐫, 𝑡 𝐮tr 𝐫, 𝑡 𝑑𝐫𝜌tr׬ , 𝐫, 𝑡 𝐮 𝐫, 𝑡 , 

𝑑𝐫𝜌tr׬ 𝐫, 𝑡 𝐮⊥ 𝐫, 𝑡 𝑑𝐫𝑷tr׬ , 𝐫, 𝑡 𝐮⊥ 𝐫, 𝑡 (in the order of more challenging 

assumptions).



VACF from Usual MD

Bumps: finite-size-effect due to the acoustic wave.



From ׬𝑑𝐫𝜌tr 𝐫, 𝑡 𝐮tr 𝐫, 𝑡

Perfect agreement (as expected)



From ׬𝑑𝐫𝜌tr 𝐫, 𝑡 𝐮 𝐫, 𝑡

Remarkably good agreement



From ׬𝑑𝐫𝜌tr 𝐫, 𝑡 𝐮⊥ 𝐫, 𝑡

Better agreement for larger time; No bumps



From ׬𝑑𝐫𝑷tr 𝐫, 𝑡 𝐮⊥ 𝐫, 𝑡

Still agrees for large time





Further Investigation

Only the center part 
𝐿

3
×

𝐿

3
is displayed

𝑡 = 0.5 𝑡 = 2 𝑡 = 6

𝜌tr 𝐮tr

𝜌tr 𝐮

𝜌tr 𝐮⊥



Uncertainty Quantification 

in MD (and Particle-Based) Simulations: 

Statistical Errors and Finite-System-Size Effects 

Collaboration with

Kang-Sahn Kim, Prof. Eok Kyun Lee (Chemistry, KAIST)

Prof. George Karniadakis (Applied Mathematics, Brown University)

Ar/Kr mixture FENE chains

in a WCA fluid

H2O + NaClLJ fluid Ethylene carbonate

liquid



Overview
Two types of intrinsic uncertainty in MD simulation results

Statistical errors
Sampling error

(precision)

Finite-system-size effects
Systematic error

(accuracy)

Estimation of transport coefficient

 Diffusion coefficient: MSD method / VACF method

 Shear viscosity

 Green-Kubo method (EqMD)

 Reverse Poiseuille method (NEMD)



Long-time tail of VACF Time integral of VACF

VACF at intermediate times

Main peak of VACF

Sample size increases up to by factor of 218

Standard error decreases up to by factor of 29 = 512

Sampling Size and Quality of MD Data



Large MD Ensemble Run 

LAMMPS LAMMPS

LAMMPS LAMMPS

Average over the ensemble

with statistical errors

Running LAMMPS with multi-partition mode
mpirun –n 1024 lmp –p 64x16 –in uloop.lmp

label abc

variable sampid uloop 64

include md.lmp # run actual script with a given sampid

next sampid

jump SELF abc



Example of md.lmp

include read_equil_sample.lmp

variable mypxy equal pxy

fix scf all ave/correlate 10 1000 10000 v_mypxy ave running &      

file res.scf${sampid} overwrite

run 1000000

variable vx1 equal vx[1]         # need “atom_modify map array”

variable vy1 equal vy[1]

variable vz1 equal vz[1]

fix vcf all ave/correlate 10 1000 10000 v_vx1 v_vy1 v_vz1 auto &

ave running file res.vcf${sampid} overwrite

Time-averaging calculation of VACF

Time-averaging calculation of 𝒑𝒙𝒚 𝟎 𝒑𝒙𝒚 𝟏𝟎𝒊∆𝒕 𝒊 = 𝟎,… , 𝟏𝟎𝟎𝟎

 Calculation of the ensemble average → post-processing



LMP_ENS (LAMMPS ENSEMBLE)

 VACF_MOL, MSD_ATOM, MSD_MOL, TCF, TCF_ATOM, AVE_TIME, …  

variable Nstep equal ${n1}*${n2}

#! RUN ${Nstep}

 LMP_ENS script can share variables with LAMMPS

#! INCLUDE read_equil_sample.lmp

variable mypxy equal pxy

fix scf all ave/correlate 10 1000 10000 v_mypxy

run 1000000

#! FIX_STAT get scf

#! FIX_STAT stat a3 intg(a3)

#! FIX_STAT print res.pxy0pxyt 

Usage 1

#! INCLUDE read_equil_sample.lmp

#! VACF_ATOM vacf1 10 1000 res.vacf Na 100 xyz –-intg –-sum 

#! RUN 1000000

Usage 2

LAMMPS wrapper program for large ensemble MD run and uncertainty quantification



Standard Errors in a Time Autocorrelation 
Function and Its Time Integral 

ത𝑋 =
1

𝑁
෍

𝑖=1

𝑁

𝑋𝑖 → 𝜀 = ത𝑋 − 𝜇 2 =
𝜎

𝑁

𝑋𝑖 i.i.d. with mean 𝜇 and variance 𝜎2 𝜀2 𝑡 =
𝑎 𝑡

𝒯𝒩
𝒯 = length of MD trajectory
𝒩 = number of MD samples 
𝑎 𝑡 = normalized standard error

Theoretical error estimates for sampling errors in a time autocorrelation function 
and its time integral



Gaussian Process Approximation

𝜀c 𝑡′ 𝜀c 𝑡′′ =
1
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𝑐 𝑡′ 𝑑𝑡′න
𝛼−𝑡

𝛼

𝑐 𝑡′ 𝑑𝑡′

𝑝 0 𝑝 𝑡1 𝑝 𝑡2 𝑝 𝑡3 =

𝑝 0 𝑝 𝑡1 𝑝 𝑡2 𝑝 𝑡3 + 𝑝 0 𝑝 𝑡2 𝑝 𝑡1 𝑝 𝑡3 + 𝑝 0 𝑝 𝑡3 𝑝 𝑡2 𝑝 𝑡4

Statistical errors in a time correlation function and its time integral can be
estimated from the correlation function under the GPA.

Error correlation function for 𝒄 𝒕 = 𝒑 𝟎 𝒑 𝒕

Standard error estimate for the time integral of 𝒄 𝒕

Kim, Borodin, Karniadakis, “Quantification of sampling uncertainty for molecular dynamics simulation: 
Time-dependent diffusion coefficient in simple fluids”, J. Comput. Phys. 302, 485 (2015)



Star Polymer Melt Result

Soft Matt. 10, 
8659 (2014)
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Statistical Errors in VACF, MSD, and 𝑫 𝒕

𝐷 𝑡 = න
0

𝑡

𝑣 0 𝑣 𝑡′ 𝑑𝑡′
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integration
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differentiation

𝐷 𝑡 =
1

2

𝑑

𝑑𝑡
𝑥 𝑡 − 𝑥 0 2

Two methods are equivalent: the same mean with the same standard error.

A colloidal particle suspended in a simple molecular fluid

Time-dependent diffusion 

coefficient 𝐷 𝑡



Finite-System-Size Effect
(LJ Fluid)

𝐷∞ = 𝐷𝐿 +
2.837𝑘𝐵𝑇

6𝜋𝜂𝐿

Shear viscosity 𝜼 Diffusion Coefficient 𝑫



Reverse Poiseuille Method
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