Multiscale Framework via Domain Decomposition

Proudly Operated by Battelle Since 1965

George Em Karniadakis & Xin Bian

 $\mathbf{j}_k = n_k \mathbf{u} + n_k \mathbf{V}_k$

 $\frac{\partial \mathbf{u}}{\partial \mathbf{u}} + \mathbf{u} \cdot \nabla \mathbf{u} =$

Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4)

http://www.pnnl.gov/computing/cm4/

Supported by DOE ASCR

Surface-Driven Phenomena

i**t** TORY Since 1965

Surface processes: Catalysis, Chemical Vapor Deposition, epitaxial growth, etc.

[Lam, Vlachos, PRB 2001]

- "noisy" intercellular communication; synchronization

Shock Dynamics: randomly rough surface

Atmosphere/Ocean applications: Tropical convection; subgrid scale effects

[Majda, Khouider, PNAS 2001], [Khouider, Majda, Katsoulakis PNAS 2003]. Cell Biology: Epidermal Growth Factor binding/dimerization

Proudly Operated by Battelle Since 1965

Imagine the promise of Mesoscale Science

- Imagine the ability to manufacture at the mesoscale: that is, the directed assembly of mesoscale structures that possess unique functionality that yields faster, cheaper, higher performing, and longer lasting products, as well as products that have functionality that we have not yet imagined.
- Imagine the realization of biologically inspired complexity and functionality with inorganic earth-abundant materials to transform energy conversion, transmission, and storage.
- Imagine the transformation from top-down design of materials and systems with macroscopic building blocks to bottom-up design with nanoscale functional units producing next-generation technological innovation.

This is the promise of mesoscale science.

EPTEMBER 2012

FROM QUANTA TO THE CONTINUUM: OPPORTUNITIES FOR MESOSCALE SCIENCE

> A REPORT FOR THE BASIC ENERGY SCIENCES ADVISORY COMMITTEE MESOSCALE SCIENCE SUBCOMMITTEE

Transport

Fluctuations

Broken Symmetry

- Coarse-grained variables
 Coarse-graining for dynamic response and fluctuations
 Quantifying uncertainty
- Hierarchy in space and time

Mathematical Challenges

Reducedorder/Coarsegrained Models

> Physical Model Problems

New Physical

Insight

 Colloid structure and transport
 Flow in channels and at material interfaces
 Macromolecular dynamics

and energetics

SamplingProjection

• Filtering

Optimization

Interfaces and Boundaries

- Descriptions of fluctuations driven by correlation and confinement
- Understanding emergent phenomena
- Improved experimental interpretation
- More impact from measurements

Hierarchical self-assembled materials
Platforms for chemical separation
Resilient bio-inspired materials

Inhomogeneity

Physical Mo

Shear Flow

Buckling Instability due to Thermal Noise Amplification

> Thermal noise is amplified as a result of stochasticity and nonlinearity competition leading to buckling of elastic fibers in the stagnation flow region.

Mesoscale Phenomena and Models

Multiple Scales - Multiple Methods

Outline

This Lecture: THEORY

Introduction

Next Lecture: Implementation & MUI

- particle methods at various scales
- 2 Deterministic-deterministic coupling
 - Schwartz alternating method
 - multi-resolution SPH

Deterministic-stochastic coupling

- fluctuations at equilibrium
 - periodic domain
 - truncated domain

fluctuations at nonequilibrium

- periodic domain
- heterogeneous adjacent multi-domains

Stochastic-stochastic coupling

- the adaptive resolution scheme
 - force-force coupling
 - energy-energy coupling

5 Summary and some perspectives

Hierarchy of Mathematical & Numerical Models

Hierarchy of Mathematical & Numerical Models

Dissipative Particle Dynamics (DPD)

• MICROscopic level approach

• atomistic approach is often problematic because larger time/length scales are involved set of point particles that move off-lattice through prescribed forces

each particle is a collection of molecules

MESOscopic scales
momentum-conserving Brownian dynamics

Navier-Stokes

- continuum fluid mechanics
- MACROscopic modeling

Ref on Theory: Lei, Caswell & Karniadakis, Phys. Rev. E, 2010

Pairwise Interactions

Forces exerted by particle **J** on particle **I**:

Fluctuation-dissipation relation: $\sigma^2 = 2 \gamma \kappa_B T$ $\omega^D = [\omega^R]^2$

Conservative fluid / system dependent

Dissipative

frictional force, represents viscous resistance within the fluid accounts for energy loss

Random

stochastic part, makes up for lost degrees of freedom eliminated after the coarse-graining

Algorithmic similarity: pairwise forces within short range r_c

• in a nutshell, ∀ particle *i* in **SPH**, **SDPD**, **DPD**, or **MD**, the EoM:

$$m_i \dot{\mathbf{v}}_i = \sum_{j \neq i} \left(\mathbf{F}_{ij}^C + \mathbf{F}_{ij}^D + \mathbf{F}_{ij}^R \right)$$
(1)

options for different components

- weighting kernel or potential gradient in MD
- equation of state
- density field
- thermal fluctuations
- NVT: thermostat
-

top-down/continuum-based

- SPH: Gingold et al. 1977, Mon. Not. R. Astron. Soc. Lucy 1977, Astron. J.
- SDPD: Español et al. 2003, Phys. Rev. E

bottom-up/coarse-grained/semi-empirical

- DPD: Hoogerbrugge et al. 1992, Europhys. Lett. Groot et al. 1997, J. Chem. Phys.
- MD: Allen et al. 1989; Frenkel et al. 2002; Evans et al. 2008; Tuckerman 2010

Grid-Based Methods

Immersive Grid-Based

FCM Coarse-grained dynamics Small particles, simple shapes Efficient for many particles Mesh independent

SPM Finer resolution Larger or compound particles

SELM Thermal fluctuations Finer resolution Deformable bodies or interfaces Atzberger (UCSB)

Higher-order schemes

Micro

Macro

Particle – Based (meshless)

SPH Lower-order continuum scheme Based on local smoothing kernel Easy to configure Galilean invariant

SPH + Thermal fluctuations Pan & Tartakovsky (PNNL)

Smoothed DPD Continuum terms from SPH Thermal fluctuations

DPD

Coarse-grained MD Thermal fluctuations

Classical MD

Overview on multiscale coupling (incomplete list)

- o domain decomposition method:
 - coupling state variable
 - relaxation dynamics O'Connell et al. 1995, Phys. Rev. E
 - Maxwell buffer Hadjiconstantinou et al. 1997, Int. J. Mod. Phys. C
 - least constraint dynamics Nie et al. 2004, J. Fluid Mech.
 - Coupling flux Flekkøy et al. 2000, Europhys. Lett. Delgado-Buscalioni et al. 2003, Phys. Rev. E
 - adaptive resolution scheme
 - coupling force Praprotnik et al. 2005, J. Chem. Phys.
 - coupling energy Potestio et al. 2013, Phys. Rev. Lett.
- CONNFFESSIT: Laso et al. 1993, J. Non-Newton Fluid Mech. Öttinger et al. 1997, J. Non-Newton Fluid

Mech. Hulsen et al. 1997, J. non-Newton Fluid Mech. (FEM + Brownian dynamics)

- heterogeneous multiscale method: E et al. 2003, Comm. Math. Sci. Ren et al. 2005, J.
 Comput. Phys. (continuum + molecular dynamics)
- equation-free: Kevrekidis et al. 2003, Comm. Math. Sci. Kevrekidis et al. 2009, Annu. Rev. Phys. Chem. (molecular dynamics + spatial interpolation/temporal projection)
- adaptive mesh & algorithm refinement: Garcia et al. 1999, J. Comput. Phys. Donev et al.
 2010, Multiscale Model Simul. (AMR + DSMC)

Red blood cell and surface interacions

Proudly Operated by Battelle Since 1965

RBC-surface interactions Adhesion of RBCs Vessel wall modelling RBC migration

Coarse-grained multiscale descriptions

Proudly Operated by Battelle Since 1965

Triple-Decker Algorithm

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

Pacific Northwes

- Atomistic-Mesoscopic-Continuum Coupling
- Efficient time and space decoupling
- \cdot Subdomains are integrated independently and are coupled through the boundary conditions every time ~ au

Communication among domains

Proudly Operated by Battelle Since 1965

1.D. A. Fedosov and G. E. Karniadakis, "Triple-decker: Interfacing atomisticmesoscopic-continuum flow regimes", *Journal of Computational Physics*, 228(4), <u>1157-1171, 2009</u>.

Algorithm validation: 1D flows

Couette flow

Poiseuille flow

Square cavity flow

Square cavity, upper wall is moving to the right

The Triple-Decker algorithm: Summary Northwest

- Triple-Decker algorithm is able to glue together atomistic, mesoscopic, and continuum regimes
- Effective space and time decoupling
- Algorithm is tested on well-known prototype flows such as Couette, Poiseuille and lid-driven square cavity
- Certain types of flows allow zero thickness of domain overlap
- Extension to complex fluids...

1.D. A. Fedosov and G. E. Karniadakis, "Triple-decker: Interfacing atomisticmesoscopic-continuum flow regimes", *Journal of Computational Physics*, 228(4), <u>1157-1171, 2009</u>.

Outline

Introduction

particle methods at various scales

2 Deterministic-deterministic coupling

- Schwartz alternating method
- multi-resolution SPH

Deterministic-stochastic coupling

- fluctuations at equilibrium
 - periodic domain
 - truncated domain

Iluctuations at nonequilibrium

- periodic domain
- heterogeneous adjacent multi-domains

Stochastic-stochastic coupling

- the adaptive resolution scheme
 - force-force coupling
 - energy-energy coupling

Summary and some perspectives

Schwartz alternating method¹

- DDM: overlapping sub-domains
 - domain $\Omega=\Omega_1\cup\Omega_2$
 - external b.c. $\partial \Omega = \partial \Omega_1 \cup \partial \Omega_2$
 - artificial b.c. $\Gamma = \Gamma_1 \cup \Gamma_2$

- Dirichlet b.c. on $\partial \Omega_1$, and $\partial \Omega_1$
- Dirichlet b.c. on Γ₁ and Γ₂

"|" is the restriction onto Γ_1 . solve elliptic PDF in Ω_2 $Lu_2^k = f \quad in \ \Omega_2, \quad (5)$ $u_2^k = g \quad on \ \partial\Omega_2, \quad (6)$ $u_2^k = \begin{cases} u_1^k | \Gamma_2 \\ u_1^{k-1} | \Gamma_2 \end{cases} \quad on \ \Gamma_2.(7)$

- multiplicative Schwartz
- additive Schwartz
- k+=1 repeat until convergence

¹Smith et al. 1996.

DDM with non-overlapping: Robin-Robin algorithm²

$$\begin{array}{rcl} (k=1) \text{ solve PDF in } \Omega_{1} & & Lu_{1}^{k} & = f & \text{ in } \Omega_{1}, & (8) \\ & u_{1}^{k} & = g & \text{ on } \partial\Omega_{1}, & (9) \\ & \frac{\partial u_{1}^{k}}{\partial n} + \gamma_{1}u_{1}^{k} & = & \frac{\partial u_{2}^{k-1}}{\partial n} + \gamma_{1}u_{2}^{k-1} \text{ on } \Gamma. & (10) \\ \end{array}$$

$$\begin{array}{rcl} \text{ solve PDF in } \Omega_{2} & & Lu_{2}^{k} & = f & \text{ in } \Omega_{2}, & (11) \\ & u_{2}^{k} & = g & \text{ on } \partial\Omega_{2}, & (12) \\ & \frac{\partial u_{2}^{k}}{\partial n} + \gamma_{2}u_{2}^{k} & = & \begin{cases} \frac{\partial u_{1}^{k}}{\partial n} + \gamma_{2}u_{1}^{k} \\ \frac{\partial u_{1}^{k-1}}{\partial n} + \gamma_{2}u_{1}^{k-1} & \text{ on } \Gamma. & (13) \end{cases}$$

- u_2^0 is assigned
- γ_1 , γ_2 are non-negative acceleration parameters that satisfy $\gamma_1+\gamma_2>0$
- for parallelization
- 3 k+=1 repeat until convergence
 - ²Quarteroni et al. 1999.

SPH: isothermal Navier-Stokes equations

• continuity equation: Monaghan 2005, Rep. Prog. Phys.

$$d_i = \frac{\rho_i}{m_i} = \sum_j W_{ij}, \quad \dot{\mathbf{r}}_i = \mathbf{v}_i \tag{14}$$

• momentum equation: Español et al. 2003, Phys. Rev. E; . Hu et al. 2006, J. Comput. Phys.

$$m_{i}\dot{\mathbf{v}}_{i} = \sum_{j\neq i} \left(\mathbf{F}_{ij}^{C} + \mathbf{F}_{ij}^{D}\right) + \mathbf{F}_{i}^{b}, \qquad (15)$$

$$\mathbf{F}_{ij}^{C} = -\left(\frac{P_{i}}{d_{i}^{2}} + \frac{P_{j}}{d_{j}^{2}}\right) \frac{\partial W}{\partial r_{ij}} \mathbf{e}_{ij}, \qquad (16)$$

$$\mathbf{F}_{ij}^{D} = \frac{\eta}{d_{i}d_{j}r_{ij}} \frac{\partial W}{\partial r_{ij}} \left(\frac{2D-1}{D}\mathbf{v}_{ij} + \frac{D+2}{D}\mathbf{e}_{ij} \cdot \mathbf{v}_{ij}\mathbf{e}_{ij}\right) \qquad (17)$$

 $W(r_{ij})$: B-Splines, Gaussian, Wendland functions ...

• weakly compressible: Batchelor 1967; Monaghan 1994, J. Comput. Phys.

$$p = p_0 \left[\left(\frac{\rho}{\rho_r} \right)^{\gamma} - 1 \right] \tag{18}$$

 p_0 relates to an artificial sound speed c_T

Overlapping sub-domains of particles: hybrid interface³

- Γ_1 and Γ_2 : constraint dynamics for v (and ρ)
- c_1 and c_2 : pressure correction and deletion-insertion of particles
- a: hybrid reference line for combining two results

³X. Bian et al. (2015b). "Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition". In: *J. Comput. Phys.* 297.0, pp. 132–155.

Hybrid interface region: identified tasks⁴

- velocity, density constraint in Γ_1,Γ_2 : targeting the other side
 - Lagrangian interpolation from the other sub-domain

$$\mathbf{u}_{k}^{constr} = \sum_{l} \frac{\mathbf{v}_{l}}{d_{l}} W_{kl}, \ d_{k}^{cons} = \sum_{l} \frac{m_{2}}{m_{1}} W_{kl}, \ k \in \Gamma_{1}, \quad l \in \Omega_{2}|_{y:[f_{2},e_{2}]}(19)$$
$$\mathbf{v}_{k}^{constr} = \sum_{l} \frac{\mathbf{u}_{l}}{d_{l}} W_{kl}, \ d_{k}^{cons} = \sum_{l} \frac{m_{1}}{m_{2}} W_{kl}, \ k \in \Gamma_{2}, \quad l \in \Omega_{1}|_{y:[e_{1},f_{1}]}(20)$$

 pressure correction: keep conditionally **F**^C_{ij} · **e**_n in Γ₁, Γ₂

particle deletion/insertion

- deletion: leave sub-domain
- insertion: according to (*integer*) mass accumulated along c₁, c₂

$$N_{A_{i}}^{t_{1}^{n}} = N_{A_{i}}^{t_{1}^{n-1}} + d_{A_{i}}u_{A_{i},y}\Delta x_{1}\Delta t_{1}, \quad (21)$$

$$N_{B_{i}}^{t_{2}^{n}} = N_{B_{i}}^{t_{2}^{n-1}} + d_{B_{i}}v_{B_{i},y}\Delta x_{2}\Delta t_{2}. \quad (22)$$

 A_i are regular points spaced Δx_1 along c_1 , B_i are regular points spaced Δx_2 along c_2 . when $N^t > 1$ insert one particle and $N^t - = 1$

⁴Bian et al. 2015b, J. Comput. Phys.

Parallel integrations/intermediate communications

•
$$\Delta t_2 = N_s \Delta t_1$$
 and $\Delta t_{comm} = N_c \Delta t_2$

• at each Δt_{comm} , a quasi-steady state is assumed

Numerical errors due to intermediate communications

- Transient Couette flow:
 - $v_x \neq 0$ and $\partial v_x / \partial y > 0$
 - hybrid reference line $y_a = L_y/2$
 - $m_2 = 8m_1$ and $\Delta t_2 = 4\Delta t_1$

errors vs. t_{comm} at three snapshots errors vs time for three t_{comm} s. solid symbols for Ω_1 (fine resolution) and empty for Ω_2 (coarse resolution)

Perturbations on coupled sub-domains

- periodic in all directions
- initial velocity either in x (transversal) or in y (longitudinal)

Vorticity diffusion and sound wave across hybrid interface

• multi-resolution SPH: $m_2 = 8m_1$ and $\Delta t_2 = 4\Delta t_1$

transversal perturbation ($v_x \neq 0$)

longitudinal perturbation ($v_y \neq 0$)
Wannier-like flow: Re = 0.0946

• single high resolution SPH: N = 41504

A cylinder confined in channel flow: streamlines

Wannier-like flow: two and single resolutions⁵

- $m_2 = 16m_1$ and $\Delta t_2 = 16\Delta t_1$
- $N_1 = 23704$ and $N_2 = 1850$

velocity contour: v_x

velocity contour: v_y

⁵Bian et al. 2015b, J. Comput. Phys.

Outline

Summary and some perspectives

The Landau-Lifshitz-Navier-Stokes (LLNS) equations⁶

The equations of continuity and dynamics for an isothermal fluid read as,

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \rho + \rho \nabla \cdot \mathbf{v} = 0, \qquad (23)$$

$$\rho\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{v} + \nabla \cdot \mathbf{\Pi} = 0, \qquad (24)$$

where the stress tensor consist of three components

$$\Pi_{\mu\sigma} = \Pi^{C}_{\mu\sigma} + \Pi^{D}_{\mu\sigma} + \Pi^{R}_{\mu\sigma}.$$
 (25)

$$\Pi^{C}_{\mu\sigma} = p\delta_{\mu\sigma}, \qquad (26)$$

$$\Pi^{D}_{\mu\sigma} = -\eta \left(\frac{\partial v_{\mu}}{\partial x_{\sigma}} + \frac{\partial v_{\sigma}}{\partial x_{\mu}} - \frac{2}{3} \delta_{\mu\sigma} \frac{\partial v_{\epsilon}}{\partial v_{\epsilon}} \right) - \zeta \delta_{\mu\sigma} \frac{\partial v_{\epsilon}}{\partial x_{\epsilon}}, \qquad (27)$$

$$<\Pi^R_{\mu\sigma}> = 0, \tag{28}$$

$$< \Pi_{\mu\sigma}^{R}(\mathbf{x},t) \Pi_{\epsilon\iota}^{R}(\mathbf{x}',t') > = 2k_{B}T\Delta_{\mu\sigma\epsilon l}\delta(\mathbf{x}-\mathbf{x}')\delta(t-t'), \qquad (29)$$

$$\Delta_{\mu\sigma\epsilon\iota} = \eta \left(\delta_{\mu\epsilon} \delta_{\sigma\iota} + \delta_{\mu\iota} \delta_{\sigma\epsilon} \right) + \left(\zeta - \frac{2}{3} \eta \right) \delta_{\mu\sigma} \delta_{\epsilon} (30)$$

Linearization of LLNS

The fluctuations on the state variables are defined as

$$\mathbf{z}(\mathbf{x},t) = [\delta\rho(\mathbf{x},t), \delta\mathbf{v}(\mathbf{x},t)], \qquad (31)$$

with $\rho = \rho_0 + \delta \rho = \langle \rho \rangle + \delta \rho$ and $\mathbf{v} = \mathbf{v}_0 + \delta \mathbf{v} = \delta \mathbf{v}$. Neglecting the second order in fluctuations we get

$$\frac{\partial \delta \rho}{\partial t} + \rho_0 \nabla \cdot \delta \mathbf{v} = 0, \qquad (32)$$
$$\frac{\partial \delta v_{\mu}}{\partial t} + \frac{c_T^2}{\rho_0} \frac{\partial}{\partial x_{\mu}} \delta \rho - \nu \nabla^2 \delta v_{\mu} - \left(\kappa + \frac{\nu}{3}\right) \frac{\partial}{\partial x_{\mu}} \nabla \cdot \delta \mathbf{v} = -\frac{1}{\rho_0} \frac{\partial}{\partial x_{\mu}} \sigma_{\mu\sigma}^R,$$

After spatial Fourier transform, we write in a compact form

$$\frac{\partial \widehat{z}_{\epsilon}(\mathbf{k},t)}{\partial t} = -\mathcal{L}_{\epsilon\iota}(\mathbf{k},t)\widehat{z}_{\iota}(\mathbf{k},t)$$
(33)

where \mathcal{L} is the hydrodynamic matrix. Solve Eq. (33) to get evolutions and correlations of fluctuations.

Summary of theory: correlation functions of fluctuations⁷

• in k-space: spatial Fourier transform of fluctuations

$$\frac{\langle g_{\perp}(k,t)g_{\perp}(k,t+\tau) \rangle}{\sigma^{2}[g_{\perp}(k,t)]} = e^{-\nu k^{2}\tau}, \quad (34)$$

$$\frac{\langle g_{\parallel}(k,t)g_{\parallel}(k,t+\tau) \rangle}{\sigma^{2}[g_{\parallel}(k,t)]} = e^{-\Gamma_{T}k^{2}\tau}\cos(c_{T}k\tau), \quad (35)$$

$$\frac{\langle \rho(k,t)\rho(k,t+\tau) \rangle}{\sigma^{2}[\rho(k,t)]} = e^{-\Gamma_{T}k^{2}\tau}\cos(c_{T}k\tau), \quad (36)$$

$$\frac{\langle g_{\parallel}(k,t)i\rho(k,t+\tau) \rangle}{\sigma^{2}[g_{\parallel}(k,t)]/c_{T}} = e^{-\Gamma_{T}k^{2}\tau}\sin(c_{T}k\tau), \quad (37)$$

$$\frac{\langle \rho(k,t)ig_{\parallel}(k,t+\tau) \rangle}{\sigma^{2}[g_{\parallel}(k,t)]/c_{T}} = -e^{-\Gamma_{T}k^{2}\tau}\sin(c_{T}k\tau), \quad (38)$$

• $\Gamma_T = (4\eta/3 + \zeta)/2\rho$: sound attenuation coefficient ⁷Ernst et al. 1971, *Phys. Rev. A*; Boon et al. 1991; Hansen et al. 2013.

Discretization of the LLNS equations.

• Eulerian discretization of SPDE

FVM with various temporal schemes (periodic versus specular wall)

- no guarantee of thermodynamic consistency on the discrete level
- some improvement has been done recently

- Lagrangian mesoscopic particle methods: thermodynamic consistency
 - dissipative particle dynamics
 - smoothed dissipative particle dynamics
- GENERIC framework^a
 - discrete form easily cast into its formulation

^aÖttinger et al. 1997b, *Phy. Rev. E*.

SDPD simulation: correlation of fluctuations in pbc⁷

autocorrelation functions

⁷X. Bian et al. (2015a). "Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent multidomains: Thermal equilibrium". In: *Phys. Rev. E* 92 (5), p. 053302. DOI: 10.1103/PhysRevE.92.053302.

DPD fluid properties: measured by correlation functions⁸

Given trajectories, we calculate

$$< u(k,t)w(k,t+\tau) >=$$

$$\frac{1}{N_s} \sum_{s=1}^{N_s} \hat{f}_k(u(\mathbf{x},t))\hat{f}_k(w(\mathbf{x},t+\tau)), \quad (28)$$

where Fourier transform is defined as

$$\hat{f}_{k}(u(\mathbf{x}, t)) = \frac{1}{N_{p}} \sum_{j=1}^{N_{p}} u(\mathbf{x}_{j}, t) e^{-i\mathbf{k}\cdot\mathbf{x}_{j}(t)}.$$
(29)
From Eqs.(23) and (24), we infer the

fluid properties as

•
$$\eta = 1.077$$
, $c_T = 4.085$, $\zeta = 0.718$

⁸Bian et al. 2015a, *Phys. Rev. E*.

Transversal and longitudinal CFs

Fluctuations in a truncated domain at equilibrium

continuum-particle coupling may be simplified by a truncated domain

simplification of coupling

examined zone

we quantify the fluctuations in the shadowed zone

A buffer boundary for the truncated domain

- velocity is from a Gaussian distribution
- density is from
 - a Gaussian distribution or
 - a conditional Gaussian distribution using Kriging
- missing pressure: conditional conservative force

conditional conservative force

regular particle distribution

Temperature, density, its variance, and spatial correlation

Correlation functions of fluctuations in truncated domain⁹

transversal and longit.-density CFs

⁹Bian et al. 2015a, *Phys. Rev. E.*

Outline

particle methods at various scales

Deterministic-deterministic coupling

- Schwartz alternating method
- multi-resolution SPH

3 Deterministic-stochastic coupling

- fluctuations at equilibrium
 - periodic domain
 - truncated domain

fluctuations at nonequilibrium

- periodic domain
- heterogeneous adjacent multi-domains

Stochastic-stochastic coupling

- the adaptive resolution scheme
 - force-force coupling
 - energy-energy coupling

5 Summary and some perspectives

Perturbation theory at stationary state: ACFs of fluctuations in Lees-Edwards bc

$$C_{T_1}(\mathbf{k},\tau) = \left(\frac{k_0}{k(\tau)}\right) e^{-\nu\alpha(\mathbf{k},\tau)},\tag{30}$$

$$C_{T_2}(\mathbf{k},\tau) = e^{-\nu\alpha(\mathbf{k},\tau)}, \qquad (31)$$

$$C_L(\mathbf{k},\tau) = \left(\frac{k(\tau)}{k_0}\right)^{1/2} e^{-\Gamma_T \alpha(\mathbf{k},\tau)} \cos(c_T \beta(\mathbf{k},\tau)).$$
(32)

 α and β are defined as

$$\alpha(\mathbf{k},t) = k_0^2 t - \dot{\gamma} k_x k_y t^2 + \frac{1}{3} \dot{\gamma}^2 k_x^2 t^3, \qquad (33)$$

$$\beta(\mathbf{k},t) = \frac{1}{2\dot{\gamma}k_x} \left\{ k_y k_0 - k_y(t)k(t) - k_\perp^2 \ln\left[\frac{k_y(t) + k(t)}{k_y + k_0}\right] \right\}.$$
 (34)

Lutsko et al. 1985, Phys. Rev. A; . Otsuki et al. 2009, Phys. Rev. E; . Varghese et al. 2015, Phys. Rev. E

Exponent $\alpha(\mathbf{k}, t)$ and frequency $\beta(\mathbf{k}, t)$

• $\dot{\gamma} > 0$ versus $\dot{\gamma} = 0$ (equilibrium)

transversal ACF: may decay faster or slower

longitudinal ACF: sound frequency may be higher or lower

DPD simulation 1: transversal ACFs of fluctuations¹⁰

•
$$\mathbf{k}_1 = (2\pi/L_x, 0, 0)$$
:
 $\alpha(\mathbf{k}, t) = k_0^2 t + \frac{1}{3}\dot{\gamma}^2 k_x^2 t^3$
(35)

 $\dot{\gamma} = 1.0, \ 0.5, \ 0.2, \ 0.1 \ \text{and} \ 0 \ (\text{at equilibrium})$

¹⁰X. Bian et al. (2016c). "Correlations of hydrodynamic fluctuations in shear flow". In: J. Fluid Mech. submitted.

DPD simulation 2: transversal ACFs of fluctuations¹¹

•
$$\mathbf{k}_1 = (2\pi/L_x, 2\pi/L_y, 0)$$

 $\alpha(\mathbf{k}, t) = k_0^2 t - \dot{\gamma} k_x k_y t^2 + \frac{1}{3} \dot{\gamma}^2 k_x^2 t^3$ (36)

 $\dot{\gamma} = 1.0, 0.5, 0.2, 0.1$ and 0 (at equilibrium)

¹¹Bian et al. 2016c, J. Fluid Mech. submitted.

DPD simulation 3: transversal ACFs of fluctuations¹²

•
$$\mathbf{k}_1 = (2\pi/L_x, -2\pi/L_y, 0)$$

 $\alpha(\mathbf{k}, t) = k_0^2 t - \dot{\gamma} k_x k_y t^2 + \frac{1}{3} \dot{\gamma}^2 k_x^2 t^3$ (37)

 $\dot{\gamma}=$ 1.0, 0.5, 0.2, 0.1 and 0 (at equilibrium)

¹²Bian et al. 2016c, J. Fluid Mech. submitted.

DPD simulation 4: longitudinal ACFs of fluctuations¹³

• Doppler effects for $\dot{\gamma} > 0$

$$\beta(\mathbf{k},t) = \frac{1}{2\dot{\gamma}k_x} \left\{ k_y k_0 - k_y(t)k(t) - k_\perp^2 \ln\left[\frac{k_y(t) + k(t)}{k_y + k_0}\right] \right\}$$
(38)

¹³Bian et al. 2016c, J. Fluid Mech. submitted.

DDM: nonequilibrium coupling¹⁴

Sketch of coupling between particles and finite difference method: $\Delta t_{comm} = \Delta t$

¹⁴X. Bian et al. (2016a). "Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow". In: *Phys. Rev. E* 93 (3), p. 033312. DOI:

DDM: artificial b.c. and constraint dynamics

• $P \rightarrow C$: simple spatial-temporal average

$$V_e = \frac{1}{N_t} \sum_{j=1}^{N_t} \frac{1}{N_{cd}} \sum_{i=1}^{N_{cd}} v_i$$
(39)

- N_{cd} is the instantaneous number of particles in cell P
 ightarrow C
- $N_t = \Delta t / \delta t$ (example latter $N_t = 180$, VACF is below 1.5% at $180\delta t$)
- at truncation line a:
 - mean pressure by integral function Lei et al. 2011, J. Comput. Phys.
 - specular reflection Bian et al. 2015b, J. Comput. Phys.
- $C \rightarrow P$: non-holonomic constraint

$$\frac{1}{N_{\Gamma_1}}\sum_{i=1}^{N_{\Gamma_1}} v_i = \overline{V}_{\Gamma_1},$$

(40

- tends to be satisfied at every δt
- leave thermal fluctuations unaffected as much as possible

• idea: let the average of Γ_1 relax towards \overline{V}_{Γ_1} over Δt_{comm}

$$\dot{v}_{i} = \frac{F_{i}}{m} + \frac{\epsilon}{\delta t} \left(\overline{V}_{\Gamma_{1}} - \frac{1}{N_{\Gamma_{1}}} \sum_{i=1}^{N_{\Gamma_{1}}} v_{i} \right), \qquad (41)$$

where \mathbf{F}_i is the usual particle force and $\epsilon (= 0.01)$ is a tuning parameter O'Connell et al. 1995, *Phys. Rev. E*

remark:

- little intrusion on fluctuations
- $\bullet \ \epsilon$ depends on both fluid properties and flow condition

Relaxation dynamics for Couette flow

Schematic for coupling MD-continuum and a setup for Couette flow

velocity, shear stress and density

• idea: equation of motion for particles in Γ_1 is shuffled at every δt

- mean: interpolated from the continuum
- fluctuation: drawn randomly

$$v_i = V_i + \delta v_i, \qquad (42)$$

$$V_i = V_b + (V_a - V_b)(y_i - y_b)/\Delta y,$$
 (43)

$$p(\delta v_i) = \sqrt{\frac{m}{2\pi k_B T}} exp\left[\frac{-m(\delta v_i)^2}{2k_B T}\right], \qquad (44)$$

where p is the Maxwell-Boltzmann distribution

Hadjiconstantinou et al. 1997, Int. J. Mod. Phys. C

remark:

- very effective for the mean
- strong intervention: abrupt move on iso-surface (T_c) in phase-space

Maxwell buffer for obstructed channel flow

- inflow: parabolic velocity
- outflow: no-stress

problem setup and velocity profiles at stead state

Hadjiconstantinou et al. 1997, Int. J. Mod. Phys. C

Constraint dynamics 3: flux imposition

• idea: impose stress τ_a^{xy} on the interface

$$\dot{v}_i = \frac{F_i}{m} + F_i^{\tau}, \qquad (45)$$
$$F_i^{\tau} = \tau_a^{xy} A \lambda(y_i), \qquad (46)$$

where A is the interface area and $\lambda(y_i) = g(y_i) / \sum_{i=1}^{N_{\Gamma_1}} g(y_i),$ (47)

is an arbitrary but normalized function in the original work.

Flekkøy et al. 2000, Europhys. Lett.

if assuming linear shear locally

Ren 2007, J. Comput. Phys.

$$F_i^{\tau} = B_0 \tau_a^{xy} \gamma_{||}^D(h)h, \qquad (48)$$

- more fundamental, two fluids may have different properties
- o conservative? not really
- *B*₀ depends on fluids property and flow conditions

Flux imposition for Couette and Poiseuille flows

Flux exchange in an overlapping region

Couette and Poiseuille flows at steady state Flekkøy et al. 2000, Europhys. Lett.

Constraint dynamics 4: least constraint dynamics

• idea: principle of least constraint (non-holonomic on \overline{V}_{Γ_1})

$$\dot{v}_i = \frac{F_i}{m} - \frac{1}{N_{\Gamma_1}} \sum_{i=1}^{N_{\Gamma_1}} \frac{F_i}{m} + \frac{1}{\delta t} \left(\overline{V}_{\Gamma_1} - \frac{1}{N_{\Gamma_1}} \sum_{i=1}^{N_{\Gamma_1}} v_i \right),$$

(49

where \mathbf{F}_i is the usual particle force

Nie et al. 2004, J. Fluid Mech.

alternative but equivalent idea: body force adjustment

Werder et al. 2005, J. Comput. Phys.

remark:

- little intrusion on fluctuations
- non-holonomic constraint at every δt too strong? ϵ again?

Least constrain dynamics for channel flow

nano-scale rough walls

• velocity profiles at various x

Nie et al. 2004, J. Fluid Mech.

Hybrid DPD+FDM simulations: transient mean profiles¹⁵

•
$$L_v^{FDM} = 2L_v^{DPD}$$
 and $\Delta t = 180\delta t$

relaxation dynamics ($\epsilon = 0.02$)

flux-imposition

Maxwell buffer & least constraint: similar accuracy, not shown
 ¹⁵Bian et al. 2016a, *Phys. Rev. E*.

Single particle simulations versus hybrid simulations¹⁶

Sketch of examined region for fluctuations

¹⁶Bian et al. 2016a, *Phys. Rev. E*.

Hybrid simulations: fluctuations δv_x

• transversal ACF: $\mathbf{k}_1 = (0, 0, 2\pi/L_z)$

• $\mathbf{k}_2 = (0, 0, 4\pi/L_z)$: similar, not shown

Root mean squared errors on fluctuations δv_x^{17}

- Maxwell-buffer: a strong intrusion
- with a sufficient gap, all are the same and error decays linearly ¹⁷Bian et al. 2016a, *Phys. Rev. E*.

Sketch of two sources of contaminations

- truncation effects: mean pressure and specular reflection
- artifacts by constraint dynamics: four methods

Two sources of contaminations on fluctuations δv_x

• transversal ACF: $\mathbf{k}_1 = (0, 0, 2\pi/L_z)$

Maxwell buffer

least constraint dynamics

- relaxation dynamics: similar to least constraint dynamics, not shown
- flux imposition: two sources can not be separated
- $\mathbf{k}_2 = (0, 0, 4\pi/L_z)$: similar, not shown
Two errors on fluctuations δv_x^{18}

• $\mathbf{k}_1 = (0, 0, 2\pi/L_z)$

Maxwell buffer

least constraint dynamics

- relaxation dynamics: similar to least constraint dynamics, not shown
- flux imposition: two sources can not be separated

•
$$\mathbf{k}_2 = (0, 0, 4\pi/L_z)$$
: similar, not shown

¹⁸Bian et al. 2016a, Phys. Rev. E.

Outline

particle methods at various scales

2 Deterministic-deterministic coupling

- Schwartz alternating method
- multi-resolution SPH

3 Deterministic-stochastic coupling

- fluctuations at equilibrium
 - periodic domain
 - truncated domain

Iluctuations at nonequilibrium

- periodic domain
- heterogeneous adjacent multi-domains

4 Stochastic-stochastic coupling

- the adaptive resolution scheme
 - force-force coupling
 - energy-energy coupling

5 Summary and some perspectives

Adaptive resolution scheme (AdResS)

changing degrees of freedom on the fly

AdResS: force coupling

 $\mathbf{F}_{\alpha\beta}^{H} = \lambda(X_{\alpha}, X_{\beta})\mathbf{F}_{\alpha\beta}^{MD} + [1 - \lambda(X_{\alpha}, X_{\beta})]\mathbf{F}_{\alpha\beta}^{C},$ $\mathbf{F}^{MD}_{lphaeta} = \sum_{i=1}^{N_{lpha}} \sum_{j=1}^{N_{eta}} F^{LJ}_{ij}.$ (51

(50)

The weighting function is $\lambda(X_{\alpha}, X_{\beta}) = w(X_{\alpha})w(X_{\beta})$ and

$$w(X) = \begin{cases} 0, & x_e \leq X < x_a \\ \cos^2 \left[\frac{\pi}{2} \left(\frac{X - x_b}{x_a - x_b} \right) \right], & x_a \leq X < x_b \\ 1, & x_b \leq X < x_c \\ \cos^2 \left[\frac{\pi}{2} \left(\frac{X - x_c}{x_d - x_c} \right) \right], & x_c \leq X < x_d \\ 0, & x_d \leq X < x_f \end{cases}$$

(52)

weight function and its first derivative are continuous.

Praprotnik et al. 2005, J. Chem. Phys.

AdResS: the actual hybrid regions

• Due to weighting function: $\lambda(X_{\alpha}, X_{\beta}) = w(X_{\alpha})w(X_{\beta})$

Hybrid molecules exist not only in I and I', but also in II and II'.

 \bullet interactions between molecules α and β in different regions

molecules $\alpha \ \ \beta$	DPD	hybrid I	hybrid II	MD
DPD	$F^{\mathcal{C}}_{lphaeta}$	$F^{\mathcal{C}}_{lphaeta}$	×	×
hybrid I	$F^{\mathcal{C}}_{lphaeta}$	$F^{H}_{lphaeta}$	$F^{H}_{lphaeta}$	×
hybrid II	×	$F^{H}_{lphaeta}$	$F^{MD}_{lphaeta}$	$F^{MD}_{lphaeta}$
MD	×	×	$F^{MD}_{lphaeta}$	$F^{MD}_{lphaeta}$

Hamiltonian-AdResS: energy coupling \longrightarrow force coupling

• A Hamiltonian *H* for "mixed resolution" reads Potestio et al. 2013, Phys. Rev. Lett.

$$H = \sum_{\alpha i} \frac{P_{\alpha i}^2}{2m_{\alpha i}} + \sum_{\alpha} \left\{ w(X_{\alpha}) V_{\alpha}^{MD} + \left[1 - w(X_{\alpha})\right] V_{\alpha}^C \right\} + V^{int}.$$
(53)

• Force derived from *H* on *atom level* reads

$$\mathbf{F}_{\alpha i}^{H} = \sum_{\beta,\beta\neq\alpha} \left\{ \lambda(X_{\alpha}, X_{\beta}) \sum_{j=1}^{N_{c}} \mathbf{F}_{\alpha i|\beta j}^{MD} + [1 - \lambda(X_{\alpha}, X_{\beta})] \mathbf{F}_{\alpha i|\beta}^{C} \right\} + \mathbf{F}_{\alpha i}^{int} - \left(V_{\alpha}^{MD} - V_{\alpha}^{C} \right) \nabla_{\alpha i} w(X_{\alpha}).$$
(54)

where $\lambda(X_{\alpha}, X_{\beta}) = \frac{w(X_{\alpha}) + w(X_{\beta})}{2}$

• Force derived from *H* between two *molecules* reads

$$\mathbf{F}_{\alpha\beta}^{H} = \lambda(X_{\alpha}, X_{\beta})\mathbf{F}_{\alpha\beta}^{MD} + [1 - \lambda(X_{\alpha}, X_{\beta})]\mathbf{F}_{\alpha\beta}^{C}$$
(55)
$$- \left(V_{\alpha\beta}^{MD} - V_{\alpha\beta}^{C}\right)\nabla_{\alpha}w(X_{\alpha})$$
(56)

Hamiltonian-AdResS: if drift force vanishes

• extra drift force from the H-AdResS:

$$\mathbf{F}^{dr} = -\left(V^{MD}_{\alpha\beta} - V^{C}_{\alpha\beta}\right)\nabla_{\alpha}w(X_{\alpha})$$
(57)

• for $V^{MD}_{\alpha\beta} \approx V^{C}_{\alpha\beta}$ which is true for

- force-matching coarse graining Izvekov et al. 2005, J. Chem. Phys.
- Mori-Zwanzig coarse graining Li et al. 2014, Soft Matter

we have from H-AdResS

$$\mathbf{F}_{\alpha\beta}^{H} = \lambda(X_{\alpha}, X_{\beta})\mathbf{F}_{\alpha\beta}^{MD} + [1 - \lambda(X_{\alpha}, X_{\beta})]\mathbf{F}_{\alpha\beta}^{C}$$
(58)

then the difference between force-coupling and energy-coupling is

$$\lambda(X_{\alpha}, X_{\beta}) = w(X_{\alpha})w(X_{\beta}) \quad vs. \quad \lambda(X_{\alpha}, X_{\beta}) = \frac{w(X_{\alpha}) + w(X_{\beta})}{2}$$
(59)

AdResS: force coupling formula is non-symmetric¹⁹

Recall the force coupling in AdResS:

$$\mathbf{F}_{\alpha\beta}^{H} = \lambda(X_{\alpha}, X_{\beta}) \mathbf{F}_{\alpha\beta}^{MD} + [1 - \lambda(X_{\alpha}, X_{\beta})] \mathbf{F}_{\alpha\beta}^{C}, \quad (60)$$

$$\lambda(X_{\alpha}, X_{\beta}) = w(X_{\alpha}) w(X_{\beta}). \quad (61)$$

This setup is not symmetric

• either by swapping MD and DPD regions

• or by changing the monotonic direction of the weight function wFor example, X_{α} and X_{β} are both in the middle of the hybrid region $w(X_{\alpha}) = w(X_{\beta}) = 0.5$. Therefore, $\mathbf{F}_{\alpha\beta}^{H} = 0.25 \mathbf{F}_{\alpha\beta}^{MD} + 0.75 \mathbf{F}_{\alpha\beta}^{C}$

If swapping MD and DPD regions, or reversing monotonic direction of w, we get $\mathbf{F}_{\alpha\beta}^{H} = 0.75 \mathbf{F}_{\alpha\beta}^{MD} + 0.25 \mathbf{F}_{\alpha\beta}^{C}$. A completely different physical system!

¹⁹X. Bian et al. (2016b). "Compatibility and symmetry of the adaptive resolution scheme". In: J. Chem. Theo. Comput. in preparation.

A reconciliation of AdResS and H-AdResS: symmetry²⁰

The simplest modification on the force-coupling formula in AdResS is:

$$\mathbf{F}_{\alpha\beta}^{H} = \frac{1}{2}w(X_{\alpha})w(X_{\beta})\mathbf{F}_{\alpha\beta}^{MD} + \frac{1}{2}\left[1 - w(X_{\alpha})w(X_{\beta})\right]\mathbf{F}_{\alpha\beta}^{C} + \frac{1}{2}\left[1 - w'(X_{\alpha})w'(X_{\beta})\right]\mathbf{F}_{\alpha\beta}^{MD} + \frac{1}{2}w'(X_{\alpha})w'(X_{\beta})\mathbf{F}_{\alpha\beta}^{C}$$
(62)

If we take w'(X) to be symmetric with w(X), $\mathbf{F}_{\alpha\beta}^{H}$ is symmetric

- by either swapping MD and DPD regions
- or changing the direction of the weight function w(x).

Note that $w'(X_{\alpha}) = 1 - w(X_{\alpha})$ and $w'(X_{\beta}) = 1 - w(X_{\beta})$, we get

$$\mathbf{F}_{\alpha\beta}^{H} = \frac{w(X_{\alpha}) + w(X_{\beta})}{2} \mathbf{F}_{\alpha\beta}^{MD} + \left[1 - \frac{w(X_{\alpha}) + w(X_{\beta})}{2}\right] \mathbf{F}_{\alpha\beta}^{C}, \quad (63)$$

which coincides with the H-AdResS!

²⁰Bian et al. 2016b, J. Chem. Theo. Comput. in preparation.

Symmetric AdResS or H-AdResS: hybrid regions²¹

• Due to the weighting function: $\lambda(X_{\alpha}, X_{\beta}) = \frac{w(X_{\alpha}) + w(X_{\beta})}{2}$

²¹Bian et al. 2016b, J. Chem. Theo. Comput. in preparation.

Symmetric AdResS or H-AdResS: interactions²²

Recall

$$\mathbf{F}_{\alpha\beta}^{H} = \frac{w(X_{\alpha}) + w(X_{\beta})}{2} \mathbf{F}_{\alpha\beta}^{MD} + \left[1 - \frac{w(X_{\alpha}) + w(X_{\beta})}{2}\right] \mathbf{F}_{\alpha\beta}^{DPD}.$$
(64)

Interactions between molecules α and β in different regions: conservative part

molecules $\alpha \setminus \beta$	DPD	hybrid III	hybrid I	hybrid II	MD
DPD	$F_{\alpha\beta}^{\mathcal{C}}$	$F^{\mathcal{C}}_{lphaeta}$	×	×	×
hybrid III	$F^{\mathcal{C}}_{\alpha\beta}$	$F^{\mathcal{C}}_{lphaeta}$	$F^{H}_{lphaeta}$	×	×
hybrid I	×	$F^{H}_{lphaeta}$	$F^{H}_{lphaeta}$	$F^{H}_{lphaeta}$	×
hybrid II	×	×	$F^{H}_{lphaeta}$	$F^{MD}_{lphaeta}$	$F^{MD}_{lphaeta}$
MD	×	×	×	$F^{MD}_{lphaeta}$	$F^{MD}_{lphaeta}$

²²Bian et al. 2016b, *J. Chem. Theo. Comput. in preparation.*

A microscopic system by molecular dynamics²³

• Hamiltonian $H = \sum_{i=1}^{n} \frac{\mathbf{P}_{i}}{2m_{i}} + \frac{1}{2} \sum_{i \neq j} V(\mathbf{r}_{ij}) \quad (65)$

• potentials $V(r_{ij}) = V_{WCA}(r_{ij}) + V_{FENE}(r_{ij})$ (66)

²³Z. Li et al. (2014). "Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation". In: *Soft Matter* 10 (43), pp. 8659–8672. DOI: 10.1039/C4SM01387E.

A hybrid simulation by AdResS: MD sandwiched by DPD²⁶

changing degrees of freedom on the fly

• temperature: $T = T_0(1 \pm 1\%)$

• pressure:
$$P = P_0(1 \pm 5\%)$$

²⁶Bian et al. 2016b, J. Chem. Theo. Comput. in preparation.

Structure of the hybrid simulation²⁷

Radial distribution function of CoMs of molecules

 RDF is reproduced well

²⁷Bian et al. 2016b, J. Chem. Theo. Comput. in preparation.

Outline

Introduction

- particle methods at various scales
- Deterministic-deterministic coupling
 - Schwartz alternating method
 - multi-resolution SPH

3 Deterministic-stochastic coupling

- fluctuations at equilibrium
 - periodic domain
 - truncated domain

fluctuations at nonequilibrium

- o periodic domain
- heterogeneous adjacent multi-domains

Stochastic-stochastic coupling

- the adaptive resolution scheme
 - force-force coupling
 - energy-energy coupling

5 Summary and some perspectives

deterministic-deterministic coupling: classical DDM

extension to multi-resolution particle simulations

- deterministic-stochastic coupling:
 - often focus on the mean quantites, such as, velocity.
 - fluctuations in the stochastic sub-domain need to be preserved well

- stochastic-stochastic coupling: for complex fluid melts
 - reproducibility of MD via corase-grained (Mori-Zwanzig) DPD
 - compatibility and symmetry of MD and MZ-DPD within AdResS

- Allen, M. P. and D. J. Tildesley (1989). *Computer simulation of liquids*. Clarendon Press, Oxford.
- Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge University Press, Cambridge.
- Bian, X., Z. Li, M. Deng, and G. E. Karniadakis (2015a). "Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent multidomains: Thermal equilibrium".
 In: *Phys. Rev. E* 92 (5), p. 053302. DOI: 10.1103/PhysRevE.92.053302.
- Bian, X., Z. Li, and G. E. Karniadakis (2015b). "Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition". In: J. Comput. Phys. 297.0, pp. 132 –155. DOI: 10.1016/j.jcp.2015.04.044.
- Bian, X., M. Deng, Y.-H. Tang, and G. E. Karniadakis (2016a). "Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow". In: *Phys. Rev. E* 93 (3), p. 033312. DOI: 10.1103/PhysRevE.93.033312.
- Bian, X., Z. Li, Y.-H. Tang, and G. E. Karniadakis (2016b). "Compatibility and symmetry of the adaptive resolution scheme". In: J. Chem. Theo. Comput. in preparation.
- Bian, X., M. Deng, and G. E. Karniadakis (2016c). "Correlations of hydrodynamic fluctuations in shear flow". In: J. Fluid Mech. submitted.

References II

- Boon, J. P. and S. Yip (1991). *Molecular hydrodynamics*. Dover Publications, Inc., New York.
- Delgado-Buscalioni, R. and P. V. Coveney (2003). "Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow". In: *Phys. Rev. E* 67 (4), p. 046704. DOI: 10.1103/PhysRevE.67.046704.
- Donev, A., J. Bell, A. Garcia, and B. Alder (2010). "A hybrid particle-continuum method for hydrodynamics of complex fluid". In: *Multiscale Model Simul.* 8.3, pp. 871–911. DOI: 10.1137/090774501.
- E, W. and B. Engquist (2003). "The heterognous multiscale methods". In: Comm. Math. Sci. 1.1, pp. 87–132.
- Ernst, M. H., E. H. Hauge, and J. M. J. Van Leeuwen (1971). "Asymptotic Time Behavior of Correlation Functions. I. Kinetic Terms". In: *Phys. Rev. A* 4 (5), pp. 2055–2065. DOI: 10.1103/PhysRevA.4.2055.
- Español, P. and M. Revenga (2003). "Smoothed dissipative particle dynamics". In: *Phys. Rev. E* 67.2, p. 026705.
- Evans, D. J. and G. Morriss (2008). *Statistical mechanics of nonequilibrium liquids*. Second. Cambridge University Press.
- Flekkøy, E. G., G. Wagner, and J. Feder (2000). "Hybrid model for combined particle and continuum dynamics". In: *Europhys. Lett.* 52.3, pp. 271–276.

References III

- Fogelson, A. L. and K. B. Neeves (2015). "Fluid mechanics of blood clot formation". In: Ann. Rev. Fluid Mech. 47.1, pp. 377–403. DOI: 10.1146/annurev-fluid-010814-014513.
- Frenkel, D. and B. Smit (2002). Understanding molecular simulation: from algorithms to applications. Academic Press, a division of Harcourt, Inc.
- Garcia, A. L., J. B. Bell, W. Y. Crutchfield, and B. J. Alder (1999). "Adaptive mesh and algorithm refinement using direct simulation Monte Carlo". In: *J. Comput. Phys.* 154.1, pp. 134–155.
- Gingold, R. A. and J. J. Monaghan (1977). "Smoothed particle hydrodynamics: theory and application to non-spherical stars". In: *Mon. Not. R. Astron. Soc.* 181, pp. 375–389.
- Groot, R. D. and P. B. Warren (1997). "Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation". In: J. Chem. Phys. 107.11, pp. 4423–4435.
- Hadjiconstantinou, N. G. and A. T. Patera (1997). "Heterogeneous atomistic-continuum representations for dense fluid systems". In: *Int. J. Mod. Phys. C* 08.04, pp. 967–976.
 Hansen, J. P. and I. R. McDonald (2013). *Theory of simple liquids*. 4th ed. Elsevier.

References IV

- Hoogerbrugge, P. J. and J. M. V. A. Koelman (1992). "Simulating microsopic hydrodynamics phenomena with dissipative particle dynamics". In: *Europhys. Lett.* 19.3, pp. 155–160.
- Hu, X. Y. and N. A. Adams (2006). "A multi-phase SPH method for macroscopic and mesoscopic flows". In: J. Comput. Phys. 213.2, pp. 844–861.
- Hulsen, M. A., A. P. G van Heel, and B. H. A. A. van den BruleA (1997). "Simulation of viscoelastic flows using Brownian configuration fields". In: J. non-Newton Fluid Mech. 70.1â2, pp. 79 –101. DOI: 10.1016/S0377-0257(96)01503-0.
- Izvekov, S. and G. A. Voth (2005). "Multiscale coarse graining of liquid-state systems". In: J. Chem. Phys. 123.13, 134105, pp. –. DOI: 10.1063/1.2038787.
- Kevrekidis, I. G. et al. (2003). "Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-Level analysis". In: Comm. Math. Sci. 1.4, pp. 715–762.
- Kevrekidis, I. G. and G. Samaey (2009). "Equation-free multiscale computation: algorithms and applications". In: Annu. Rev. Phys. Chem. 60.1, pp. 321–344.
- Laso, M. and H. C. Öttinger (1993). "Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approach". In: J. Non-Newton Fluid Mech. 47.0, pp. 1 -20.

- Lei, H., D. A. Fedosov, and G. E. Karniadakis (2011). "Time-dependent and outflow boundary conditions for dissipative particle dynamics". In: J. Comput. Phys. 230, pp. 3765–3779.
- Li, Z., X. Bian, B. Caswell, and G. E. Karniadakis (2014). "Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation". In: *Soft Matter* 10 (43), pp. 8659–8672. DOI: 10.1039/C4SM01387E.
- Li, Z., X. Bian, X. Li, and G. E. Karniadakis (2015). "Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism". In: J. Chem. Phys. 143.24, 243128, p. 243128. DOI: 10.1063/1.4935490.
- Lucy, L. B. (1977). "A numerical approach to the testing of the fission hypothesis". In: *Astron. J.* 82, pp. 1013–1024.
- Lutsko, J. and J. W. Dufty (1985). "Hydrodynamic fluctuations at large shear rate". In: *Phys. Rev. A* 32 (5), pp. 3040–3054. DOI: 10.1103/PhysRevA.32.3040.
- Monaghan, J. J. (1994). "Simulating free surface flows with SPH". In: J. Comput. *Phys.* 110, pp. 399–406.
- (2005). "Smoothed particle hydrodynamics". In: *Rep. Prog. Phys.* 68.8, pp. 1703 –1759.

- Nie, X. B., S. Y. Chen, W. N. E, and M. O. Robbins (2004). "A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow". In: J. Fluid Mech. 500, pp. 55–64.
- Nie, Xiaobo, Mark O. Robbins, and Shiyi Chen (2006). "Resolving singular forces in cavity Flow: multiscale modeling from atomic to millimeter scales". In: *Phys. Rev. Lett.* 96 (13), p. 134501.
- O'Connell, S. T. and P. A. Thompson (1995). "Molecular dynamics-continuum hybrid computations: a tool for studying complex fluid flows". In: *Phys. Rev. E* 52 (6), R5792 –R5795.
- Otsuki, M. and H. Hayakawa (2009). "Spatial correlations in sheared isothermal liquids: from elastic particles to granular particles". In: *Phys. Rev. E* 79 (2), p. 021502. DOI: 10.1103/PhysRevE.79.021502.
- Ottinger, H. C., B. H. A. A. van den Brule, and M. A. Hulsen (1997a). "Brownian configuration fields and variance reduced CONNFFESSIT". In: *J. Non-Newton Fluid Mech.* 70.3, pp. 255–261. DOI: 10.1016/S0377-0257(96)01547-9.
- Ottinger, H. C. and M. Grmela (1997b). "Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism". In: *Phy. Rev. E* 56, pp. 6633–6655.

References VII

- Potestio, R. et al. (2013). "Hamiltonian Adaptive Resolution Simulation for Molecular Liquids". In: *Phys. Rev. Lett.* 110 (10), p. 108301. DOI: 10.1103/PhysRevLett.110.108301.
- Praprotnik, M., L. Delle Site, and K. Kremer (2005). "Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly". In: J. Chem. Phys. 123.22, p. 224106.
- Quarteroni, A. and A. Valli (1999). Domain decomposition methods for partial differential equations. Oxford science publications, Oxford.
- Ren, W. (2007). "Analytical and numerical study of coupled atomistic-continuum methods for fluids". In: J. Comput. Phys. 227.2, pp. 1353 –1371.
- Ren, W. and W. E (2005). "Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics". In: J. Comput. Phys. 204.1, pp. 1 –26. DOI: 10.1016/j.jcp.2004.10.001.
- Smith, B., P. Bjorstad, and W. Gropp (1996). Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press.
- Snoeijer, Jacco H. and Bruno Andreotti (2013). "Moving contact lines: scales, regimes, and dynamical transitions". In: Ann. Rev. Fluid Mech. 45.1, pp. 269–292. DOI: 10.1146/annurev-fluid-011212-140734.

- Tang, Y.-H., S. Kudo, X. Bian, Z. Li, and G. E. Karniadakis (2015). "Multiscale universal interface: A concurrent framework for coupling heterogeneous solvers". In: *J. Comput. Phys.* 297, pp. 13–31.
- Tuckerman, M. E. (2010). Statistical mechanics: theory and molecular simulation. Oxford University Press.
- Varghese, A., C. Huang, R. G. Winkler, and G. Gompper (2015). "Hydrodynamic correlations in shear flow: multiparticle-collision-dynamics simulation study". In: *Phys. Rev. E* 92 (5), p. 053002. DOI: 10.1103/PhysRevE.92.053002.
- Werder, T., J. H. Walther, and P. Koumoutsakos (2005). "Hybrid atomistic-continuum method for the simulation of dense fluid flows". In: J. Comput. Phys. 205, pp. 373 –390.

Adaptive Boundary Conditions

Proudly Operated by Battelle Since 1965

Iteratively adjust the wall repulsion force in each bin based on the averaged density values.

- layers of particles
- bounce back reflection
- adaptive wall force

I.V. Pivkin and G.E. Karniadakis, PRL, vol.96, 206001, 2006

Navier-Stokes: continuum

Proudly Operated by Battelle Since 1965

 $\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} = -\frac{1}{\rho}\nabla p + \nu\nabla^2 \vec{u}$

$\nabla \cdot \vec{u} = 0$

Incompressible Navier-Stokes equations
 Spectral element method discretization
 Dirichlet boundary conditions

Dissipative Particle Dynamics*

Proudly Operated by Battelle Since 1965

Force is the sum of three pair-wise additive terms:

$$\vec{\mathbf{F}}_{i}dt = \vec{\mathbf{F}}_{i}^{C}dt + \vec{\mathbf{F}}_{i}^{R}\sqrt{dt} + \vec{\mathbf{F}}_{i}^{D}dt$$

1) Conservative force:

$$\vec{F}_i^C = \sum_{i \neq j} F_{ij}^C(r_{ij}) \vec{e}_{ij}$$

$$\mathbf{F}_{ij}^{C}(\mathbf{r}_{ij}) = a_{ij}(1 - \frac{\mathbf{r}_{ij}}{\mathbf{r}_{c}}) \text{ for } \mathbf{r}_{ij} \le \mathbf{r}_{c}$$

2) Random force:

$$\vec{F}_i^R = \sigma \sum_{i \neq j} w^R(r_{ij}) \xi_{ij} \vec{e}_{ij}$$

$$w^{R}(\mathbf{r}_{ij}) = \left(1 - \frac{\mathbf{r}_{ij}}{\mathbf{r}_{c}}\right)^{p} \text{ for } \mathbf{r}_{ij} \leq \mathbf{r}_{c}$$

3) Dissipative force:

$$\vec{F}_{i}^{D} = -\gamma \sum_{i \neq j} w^{D}(r_{ij})(\vec{v}_{ij} \cdot \vec{e}_{ij})\vec{e}_{ij} \qquad w^{D}(\mathbf{r}_{ij}) = \left(w^{R}(\mathbf{r}_{ij})\right)^{2}$$

 $\sigma^2 = 2\gamma k_B T$ - (Espanol & Warren, Europhys Lett, 30:191, 1995)

* Hoogerbrugge & Koelman, Europhys Lett, 19:155, 1992

Proudly Operated by Battelle Since 1965

Lennard-Jones particle interactions

$$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

- System is kept at equilibrium temperature through the DPD thermostat
- The particles evolve according to Newton's second law of motion

DPD and MD boundary conditions

Proudly Operated by Battelle Since 1965

1) Imposition of normal velocity component

- Specular reflection at the interface in the system of coordinates at the moving boundary #
- ► Deletion of particles leaving the computational domain and insertion of particles according to BC flux $N = nAv_n\Delta t$

2) Imposition of tangential velocity component

Werder et al., J Comp Phys, 205:373-390, 2005