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Mori-Zwanzig can be used to:

1. Derive coarse-grained equations

2. Analyze systems with memory

3. Construct reduced-order models

4. Detect singularities - design meshes

5. Quantify uncertainty
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Radial Distribution Function (RDF)

The radial distribution function (or pair correlation function) g(r) in
a particle-based system describes how density varies as a function of

distance from a reference particle.

pg(r) iIs the conditional probability to
find another particle at a distance r away
from the origin.

In discrete form: count the number of particles that lie in a spherical
shell of radius r and thickness dr

p(r) (N(r 4 ar )/2 <— Number of pairs
r)=——
g(r) p p 47Tr2dr <— \Volume of the shell




Radial Distribution Function (RDF)

Note: RDF can be measured experimentally using

!T'T'; ;',,, X-ray or neutron-scattering techniques.
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Radial Distribution Function (RDF)

Thermodynamic quantities from the computed g(r): Internal Energy

3 N >
E = ENkBT+§4npf r2V(r)g(r)dr
0

Thermodynamic quantities from the computed g(r): Pressure

2 © dv(r)
P = T — — 0% 3
pkpT —Z1p fo e — — g(r)dr

Static structure factor: a mathematical description of how a material
scatters incident radiation:

oo

S(k)=1+ 471,0[ r2g(r)

sin(k
(kr) p
0 kr

r



Velocity Autocorrelation Function (VACF)

Definition: C(t) = (V(t)V(0))

which reveals the underlying nature of the dynamical processes operating

In a molecular system.

Short time: C(t) ~ exp(—yt/M)

Long time: C(t) ~ t=3/2 (Bulk), C(t) ~ t=>/2 or t~7/? (confinement)

1 o
Diffusion constant is the integral of VACF: D = 3 J dt (V(7)V(0))
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Fluctuation-Dissipation Theorem (FDT)

The FDT quantifies the relation between the fluctuations in a system at thermal
equilibrium and the response of the system to applied perturbations.

Let x(t) be an observable of a dynamical system with Hamiltonian H,y(x) subject to thermal
fluctuations. x(t) fluctuates around its mean value (x), and the power spectrum of fluctuations is
denoted by S, (w).

Consider a time-dependent field f(t) that alters the Hamiltonian to H(x) = Hy(x) + f(t)x. The
response of x(t) to f(t) is characterized by the linear response function y(t) of the system

t
x(O) =)o + | f@x(e -

The fluctuation-dissipation theorem relates the power spectrum of x to the imaginary part of the
Fourier transform y(w) of the susceptibility y(t)

2kyT

Sy(w) = Im ¥ (w)

The left-hand side describes fluctuations in x, the right-hand side relates to the energy dissipated
by the system when pumped by an oscillatory field f(t) = Fsin(wt + ¢).

For a particle-based stochastic system, a canonical ensemble is expected
only if the FDT is satisfied. Otherwise, the system cannot reach a thermal
equilibrium at the designed temperature.

R. Kubo, The fluctuation-dissipation theorem. 1966.



DPD : Pairwise Interactions

Fluctuation-dissipation relation:

s exerted b ticl n ticle I:
Forces exerted by particle J on particle 2 DT wb= [ WRP

—C (c) - .
Fo = F\ (r::)e;; > Conservative
Lj lJ ( t ) L fluid / system dependent

Fij = —yw (rfj)(vfj . eij)eij —> Dl;Slpaflve '
frictional force, represents viscous

R R/, . \N& 2. resistance within the fluid -

Ffj = ow"(rij)ijeij accounts for energy loss

Fij .
‘ [ Random
j ‘ — stochastic part, makes up for lost

degrees of freedom eliminated

after the coarse-graining
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1. Introduction
— Bottom-up coarse-graining

2. Foundation: Coarse-Graining

— Introduction of the Mori-Zwanzig formalism.
— Markovian model
— Non-Markovian model

3. Construction of coarse-grained model directly

from MD simulation
— Static properties
— Dynamics properties

4. Summary



Different coarse-graining strategies

Reverse-coarse-graining procedure

An initial guess of the CG force fields is posed at the beginning and many
free parameters in a coarse-grained model are left undetermined.

Subsequently, an (iterative) inverse optimization is carried out to get the
optimal free parameters so that target properties are obtained.

Target properties _ Optimization

Note: No guarantee of correct properties beyond targets.

Forward-coarse-graining procedure (No prior targets assigned )

The CG force fields are constructed directly from MD trajectories via the
Mori-Zwanzig projection.

This procedure may require additional assumptions for simplification of
formulation; in principle, there are no free parameters to be specified.



Outline

2. Foundation: Coarse-Graining

— Introduction of the Mori-Zwanzig formalism
— Markovian model

— Non-Markovian model



Coarse-Graining

CG: remove irrelevant degrees of freedom from a system
Dipalmitoylphosphatidylcholine

Microscopic system
All-atom model

MD

Irrelevant variables
are eliminated

Mesoscopic system

Coarse-grained model

DPD







Elimination of degrees of freedom from a system

Consider a linear differential system for two variables:

ot 1
y

- J 2
T y+x (2)

Let x, = x(t = 0) and y, = y(t = 0) denote the corresponding initial values.

By solving the Eq. (2)
¢
y = j e~ x(s)ds + ype
0

we can reduce the system into an equation for x(¢t) alone:

dx ‘
— =x+ f e~ =) x(s)ds + ype
dt ;

The second term in above equation introduces memory.

Dimension Reduction leads to memory effect and noise term.



Dissipative Particle Dynamics (DPD)
1. Mori-Zwanzig formulation

2. Direct construction of DPD from MD
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Equation of Coarse-Grained System

P;
H = Qm—I—ZUﬂI‘Z_I‘jD
=1 1<J
L Ny
Ry = N, £t P, =) Pu
1=0 1=0

CG (slower) Variables Atomistic (fast) variables



Mori-Zwanzig Formalism (Zwanzig, Nonequilibrium Statistical Mechanics, 2001)

Consider a n-dimensional system of ordinary differential equations

(;5 = ((D‘ q))" (Ff) = (d}l %) Bk (fﬁm): qj = (qs'm*}-]'.l SISl q{)l?)
Form the Liouville equation u; = Lu, the components ¢ are

oi(z,t) = etlx;

Let P be the conditional expectation projection Pg(z) = F[g|Z].

Define Q = I —P and keep in mind that P? = P, Q* = Q, and PQ = 0,

as must be true for any projection.



Mori-Zwanzig Formalism (zwanzig, Nonequilibrium Statistical Mechanics, 2001)
Consider P + Q = I, we have

0
aet[,xj — etLij — etL(]P + Q)ij — etLIP)ij + eLtQLXj

Using Dyson’s formula (Duhamel’s principle)

t
etl = otQL 4 f e(t—DLpJ oTQL 7
0
We obtain the Mori-Zwanzig equation
0 t

Ee“xj = eLPLx; + f el PLeTRLQLx;dT + e" @ QLx;
0

This equation is exact and is an alternative way of writing the original
system of ODEs.



Mori-Zwanzig Formalism (zwanzig, Nonequilibrium Statistical Mechanics, 2001)

If the coordinates and momenta of the center of mass of the coarse-grained
particles are defined as CG variable to be resolved

1
R, = — E my ;I ; P, = E Pri M; = E my;
M; £ . .
Ill I)l I,l

Define IP and Q as projection operators for a phase variable 4

QB
P(x) = (x AT)AAT)™? V
Q=1-P ;PB /L

Given A the coarse-grained momentum, we identify e!@*QLA as the
random force 6FY(t). Finally, we have the equation of motion for
coarse-grained particles

d

P, =% he(R)
dt' '~ goR, "¢

~ 3, Jy ds([SFF (¢~ 9)][SFF O] )32 + SFY (®)

Details see Kinjo, et. al., PRE 2007. Lei, et. al., PRE, 2010. Hijon, et. al., Farad. Discuss., 2010.




Mori-Zwanzig Formalism (zwanzig, Nonequilibrium Statistical Mechanics, 2001)

Consider an atomistic system consisting of N atoms, which are grouped
Into K clusters, and N atoms in each cluster.

The Hamiltonian of the atomistic system is: -
Atomistic Model

K e L)
_ZZ pivj JT"

1, ,uvlj;tl

Our interest 1s on the molecular or CG level :

The equation of motion for CG particles
can be written as:

EPI = Ea—mh]w(R)
-5y [ as(Eea - o)) T
+ SFF (1)

Details see Kinjo, et. al., PRE 2007. Lei, et. al., PRE, 2010. Hijon, et. al., Farad. Discuss., 2010.



Bottom-up coarse-grained model:

The equation of motion (KOM) of the coarse-grained (CG) particles obtained from the
Mori-Zwanzig projection is in a form of generalized Langevin equation, which is given by

d 1 0

EPI = Ea—mh]w(R)
-5y [ as(Eea - o)) T
+ SFL(1)

First approximation: Here, we assume that the non-bonded interactions between neigh-
boring clusters in the microscopic system are explicitly pairwise decomposable, and hence
the total force consists of pairwise forces, e.g.

F; ~ ZJ;HF” and 5FIQ ~ ZJ#I(YF%

Second approximation: In practice, we neglect the many-body correlations between
different pairs, and assume that the force F;; between two clusters I and J depends only
on the relative COM positions R; and R; and is independent of the positions of the rest of
clusters.

([6F3|[6F%] )k = 0



Evaluation of coarse-grained interactions:

First term: Conservative Force:

1 0 B N B C
Ba—mlnw(ﬂ,) = (F) ~ ;<F1J> = ;ﬂ Fri(Ris)ers

Second term: Dissipative Force:

—62/ ds ([SF2(t — )| [SFL(0)]) Mi)

Based on the second approximation, ([5F ][5F ] )jzxk =0
the correlation of fluctuating forces between different pairs is ignored.

Thus, we have

I <[5F?(t — S)HCSF)Q( (OHT> P])\}is)
=53 " (RSt~ 9)0FLy 0)]) Vix (9

JAIY£X
= B([6F 2, (t = )I[6F 2 (0)]") Vi(8)|x=1,y=s +
B(6FR, (t — 8)|[6FS (0)]7) Vs (s)|x=sy=r
= <:5F%(t —3)] :5F%(0):T> Vis(s)
= K;;(t—5)V;(s)




Coarse-Grained Modeling - Summary

The equation of motion (EOM) of coarse-grained particles resulting from the
Mori-Zwanzig projection is given by:

P =k Tilna)(R)—ii [ rds<[5FQ(t—S)][esF@(())T)- PO swap
"R, kT 537 [ ’ M, |
Conservative force Dissipative force Random force

Approximations for computing the coarse-grained forces:

» Pairwise decomposable: total force consists of palrW|se forces F; = Y4, Fy;
* Negligible many-body correlations: ([§F|[6F}; ] Yjex =0

Then, the above EOM can be written into its pairwise form:

P, = Z F;;(1) = Z [<F11> / K;;(t = s)Vi(s)ds + 6F%,(r)

J#1 J#1

where F; is the instantaneous force whose ensemble average (F;) is taken
as the conservative force, the memory kernel K,;(t) = g {[6F7;(t)][5F}, (0)] ),
which satisfies the second fluctuation-dissipation theorem (FDT)



R, =P, (%) General Equation of Coarse-Grained particles

: ol
R T
/Harmonlc chain

Ensemble average Dissipative force Random force

() T. Kinjo and S. A. Hyodo, Physical Review E 75, 9 (2007).



Question

: 1 Onw (R
P.=3 IR, HZ;/ds

r=1

Coupled term

General Coarse-grained Equation

?

Mesoscopic Dynamics




Langevin Equation

(6F2.(0) - 6F 2. (1)) = 076,000 (t)

B/Ot ds<[5F§(t — 5] ® [5F§(0)}T> - %502%1

: 1 Onw (R T
P,u,:[—j) IR, 32/ ds ( [JF2(t — s)] [0F2(0)] >+5F§ ()




DPD from Coarse-Grained Equation

e The random force on each cluster is decomposed into pairwise style

e The instantaneous force between two clusters is not generally parallel to
the radial vector.

5F;? ~ Z 5fp% 5f;?v — eﬂyezvdf;l% + (I - ewegu)éf,,%

v = 5f§,,,||euu + 5f:21/,J_



(Cont'd)

(05210055 (1))
(6£2,,(0)- 5£S | (1))

- 2 . .
[O’“’w” (R) ((5“651,.” + (3‘)“7}(5”6) é(f)

2o 1w (R)] (8,600 + 6,im00e) O(2)

- 1 dlnw (R T\ < .
P, = 3 8RH — [32/ ds 5FQ t —s)| [6F2(0)] > +OF§ (1)

r=1

Transverse term

\

Markovian approximation Vi (t)

— )
vFE %
Standard DPD



Numerical Simulations™

1
N, < (rg_R“)QZRE pe = p/N.

v, (r) = 43[[3) _ (i] }— U, (2.50)
: r r

* H. Lei, B. Caswell, G. E. Karniadakis, Phys. Rev. E 81 (2) (2010) 026704.



MD to DPD

Microscopic system (Molecular Dynamics)

Conservative force

What is Preserved? Dissipative force
What is Lost?

Random force

Mesoscopic system (DPD)




Conservative potential (force) term

R, =0.95,N, =10, p = 0.8 R, = 1.4397, N. = 10, p = 0.8
0

1
Forcme RV = 2 (Ru)) () = <fw Ry

V7 RHV >rd’r/2<R“p<T’+dr/2




Ry =095, N =10,kpT’=3.0 R =14397,N, = 10,kpT = 3.0

Weak dependence Strong dependence




Dissipative force term

T e P B S ST e e e

<b||(t) — <5f,%/’||(0)5f,?y,||(t)> PL(t) = % <5fp%/,J_(O)
W(t) = (U (0)vya ()

iz

: (StﬁL

Vi =B [y by (t)dt

15

:6&

L6EV'T

1))
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R, = 0.95,p = 0.8, N,

R, =0.95,p = 0.4, N, = 10



Question

Microscopic System

Fluid Structure?

Mesoscopic System




Static properties

kgl = 3.0, R, = 1.4397

kT = 3.0,R, = 0.95

2.

N

[




Question

Microscopic System

Dynamic Properties?

Mesoscopic System




Dynamic Properties
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Computing CG interactions

Pairwise Potential

C __
FIJ(R) — (FIJ(t) >'R_A/2<R”<R+A/2
Unmz(R) = f?(Fﬁ(T))d?"

Memory Kernel K(t)

=2 [<FU> - /Ot Kis(t —s)Vrs(s)ds + 5F%(t)]

JA£T

Let the difference of the instantaneous force from the mean force be the fluctuating force,
e.g., 6F;(t) = F;(t) — (Fy;). By multiplying V,T](O) on both sides of above equation

(OF 15(t)V7,(0))

— /Ot Kt —s)(Vis(s)Vi,(0))ds



Markovian DPD model

If the typical time scales of random force and momentum are
well separated, the Markovian assumption can be applied,
where the time correlation of random force is approximated by

the o-function: .
K(t) = y&(t), wherey = [~ K(t)dt

[
/ Kyt = $)Vys(s)ds =y - V(1)
0

As a result, the EOM of DPD patrticles is given by:
dP;

e ZFIJ = Z {F;;(Rip)ers

J#I J#I R
~y\(R1))- V], = v (R11) - Vi, =y (Rp)) [% X (Q + Q)
+ O'”(R[J)Af_l/z«f]] €7y + \/EO'L(RIJ)AI_IQ : dW}qJ . e”}

dL; Ry,
it B S N VNS
dt ! Jzﬂ 2 1




Non-Markovian DPD model

Without the Markovian approximation, we have to preserve
the temporal memory of each pair in the NM-DPD model

/0 Kt = 5)Vi(s)ds

To avoid prohibitive computational cost, we assume that the

memory Is finite, e.g., history length NAt. Then, the EOM of
NM-DPD particles is given by:

dPI Z F;y= Z {F5(Ryy)ery

J#I J#1

Z AT}, Ryt = nde)) - VI (2 = nAr) — Z AITT, , (Rps(t = nAt)) - Vi,(t = nAr)
~ Z ATy, (Rpy(t = nAt)) !l X (Q + QJ)]

N

T Z LJ o (Rt — nAt)) Ery(nAt)ery + Z \/_a’” (Rp;(t — nAt)) AW, (nAt) - e}
n=0 n=0

g/ SRy

dt o 2



Fluctuation-Dissipation Theorem
Markovian DPD Model

the time correlation of random force is approximated by the ¢-
function

4
/ Kyt = 9)Vis(s)ds =yry- Vi)
0
Then, the random force is white noise, with variance given by

([5F (t)][(?Ff](O)] ) = 2kpTy;6(t)

Non-Markovian DPD Model
P, = Z Fr,(1) = Z l<F1J> / Ky s(t = 5)Vis(s)ds + 6FE, ()

J#I J#I

The FDT requires ([§F 7 ()][6FF, (O)] ) = kgTK (1),

Then, the random force is colored noise.



Colored noise generator 1 (Fourier transform):
Consider discrete time steps t,, = n - 6t, n > 0.

We define R,, = R(t,) = 6F(t,), 06, =0(t,) = K(t,)
In the discrete form, the second FDT is (R,,RL) = kgT - 6,,_,,

Let 0 < n < N, we can use a periodic extension, which does not affect the
values within the first N steps. We write 6,, as

Q—ZOCS s+n

In this case, the Fourier transform IS reduced to a discrete Fourier transform.
PN N -
en _ z gne—lanﬂ'/N

Define @, = 02, the inverse Fourier transform is given by

1 L ~ _iks2x/N
o. = o, e
2N +1Z “

n=-—N

Let W, be identically distributed random variables, we generate the colored

noise by R =.k,T ZN: a W
s=—N



Colored noise generator 1 (Fourier transform): Test Case

.I 1 I I i t:]'._l" | 1 |
K TH(t) | =@, from DFT|
° i 0.6r | l
0.8 - ;
ﬂ.i' Hi N
'-:,D'ﬁ_ f(t) = (Ran> 1 o4} : -
So04r { &l | 1
=z I:}-I- i DE B L] . =
ok 0.1+ .
0
(a)
=1
é\ll
1.4F g
[-l.;’-
l !
03' 1 1
0 20 40




Colored noise generator 2 (Optimization):

Let W,, be identically distributed random variables, the random force R,, IS
given by 0
Rn = V kBT z asWn+s
s=—N

where a,, are undetermined coefficients. Then, the correlation of the random
force can be computed by

<Rn Rm> = kBT i i asat5n+s—m—t

s=—N t=—N
0
= I(BT Z asan—m+s = I(BT ) 1:n—m
s=—N
To satisfy the second FDT, we need
(R\R,)Y=k;TE, .

Numerical optimization techniques can be used to obtain a set of coefficients
a,, by minimization of L,(f,,—m — Gn—m)-



Colored noise generator 2 (Optimization):

k, TO(1)
= fi)

f(t) = (Ran> 1

1.05F

'[,]-".]'._'-I- =

.9

(a)

Test Case
0.3 : . :
| - - from lIZ_‘-lJ’T|
G.E B "Fl' L] .:.. =
0.1F ‘ .
5'1--. [] :' [ ] ,"._ Hu.‘.-.-i .'-H;_h:‘:
0.1F .
Vo
0.2} t o .
L
ﬂ 3 1 |
0.4 20 0 o] R0
(h} index s ]
[u]|3 | || | | |
|— "lr’.-‘-.C'Fl
0.25 -
0.2 -
- Smooth VACF
-1 No periodicity




Outline

3. Construction of coarse-grained model directly

from MD simulation
— Static properties
— Dynamics properties



Microscopic system to be reproduced

Consider a well-defined atomistic system consisting of N atoms which
are grouped into K clusters, and N, atoms in each cluster.

iy

Microscopic system: e, . R,

A

Nc=11 NC=21

| |
| |
| |

T0 | 1
o 22 . | Ve l
f—sle— = Sl o
. _ |
WCA Potential + FENE Potential '"1.0° 1.122 '1.0"
NN AR - A LR 1/6 M,=) m,
VWCA(T):{4C [(T) 0(7) —|_4:|? rgzl/GU H ; H
; > _
T ag Plu _Zplu,i
—1ER3In [1 — (r/Ro)?]; r < Ro .
p— 2 0 b —_—
Vi (T) { 0] r > Ry Rﬂ :Mizmu,iru,i
po M

NVT ensemble with Nose-Hoover thermostat. | L=> (r,,-R,)x(p,; ~P,)




Microscopic system to be reproduced

1 Y
0.8}
0.6

504
“02h
0

0.2 =1 gl
0 1 2 3 4

Two test systems: p = 0.4, 7, = 10.30 and 74 = 0.44
K=T,/Tf = 23.41

p=20.7 7, = 061 and 7; = 0.22
K = To/Tf = 2.77



Coarse-Grained force field

Definition of the directions for pairwise interactions between neighboring
clusters:

1. Parallel direction:
n=r-r
€ij :rijllrij |

2. Perpendicular direction #1:
Vi =V, =V,

L

]
e = Vi /| vy |
3. Perpendicular direction #2:

12 11



Coarse-Grained force field

e CG force field obtained directly from MD simulations
* No freedom to adjust parameters

| 3 |
S0F 10 I
A 40 210 - 17
10k _
230k 107 = p=04 -
& V107 o p=07 .
= | = = = Fitting curves -
%/' 20‘ l g|
10F
0k
2 25 p 3 3.5
1)
20 1 1 1 I 1
10°
— 15 10t -
s = 0
4\-_/ >~ 10
=
.10 I i
;5 0 i 2R,, 3 4
= —

5 Fitting curves| |
\\\\\o ’Y“
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Comparison

LJ’

Atomistic Model

S L)

N
Hard Potential

Coarse Graining

CG'
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Comparison: Static Properties

Radial distribution function (RDF) and Pressure (P) of MD, DPD and NM-DPD
systems:

| ]’( I = | I 1.5 I I
p—_O.4 p_—_O_.? MD T B MD
B DPD
— Il NM-DPD

0.4 p 0.7

Observation: Including non-Markovian memory in the DPD system does

not change its performance on reproducing RDF.
Reason: RDF of a DPD system is only determined by the conservative force,

and the changes of non-conservative force do not affect RDF, even if the
non-Markovian memory is introduced in the simulations.



Comparison: Dynamic Properties (p=0.4)

Performance of Markovian DPD model (DPD) and non-Markovian DPD model
(NM-DPD) in reproducing the MD systems on the velocity autocorrelation
function (VACF). k = Tt-fo — 23 41

0.3 T T ' b
10";-
= 3
0.2 %10'2; ol o
) > —w N} 2
&) 4 = = = DPD
= 10 . eve.- NM-DPD
0.1} 107 10T 10 10T A
time N
0 0.1 . 02 03
time
0F MD: D = 0.119,v = 0.965
0 2 4 6 8 10 DPD: D = 0.120,v = 0.954

time
Both Markovian model and Non-Mavkovian model can reproduce the original
MD system well.

Including memory does not change the results significantly, which indicates the
Markovian assumption can be applied safely.



Comparison: Dynamic Properties (p=0.4)

The curve of Velocity Auto-Correlation Function (VACF) contains

dynamic properties of the system

VACF(t) = KsT exp(—y—tj
M M

L 2kT 1

PM [47(D+v)t]

3/2

M is the mass of a spherical particle.
y is the Stokes viscous drag coefficient.

Short time: VACF ~ exp(—t/ty)
Long time: VACF ~ t=3/2
Timescales: 7, = M/y

Quantities MD DPD (error)
Pressure 0.191 0.193 (+1.0%0)
(Inte?;lrglug:‘v\l/tz\CF) 0.119 20 (FH0EH),
Viscosity 0.965 0.954 (-1.1%)
Schmidt number 8.109 7.950 (-2.0%)
Stokes-Einstein radius 1.155 1.158 (+0.3%0)




Discussion: Many-Body effect (p=0.4)
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Discussion: Many-Body effect (p=0.4)

Quantities MD DPD (error)
Pressure 0.198 0.194 (-2.0%)
Diffusivity .
N, =21 (Integral of VACF) 0.061 DI (R E2e)
Viscosity 1.413 1.457 (+3.1%)
Schmidt number 23.16 24.28 (+4.8%)
Stokes-Einstein radius 1.539 1.517 (-1.4%)
Quantities MD DPD (error)
Pressure 0.210 0.202(-3.8%0)
Diffusivity .
N, =31 (Integral of VACF) 0.040 D00 (A
Viscosity 1.878 2.087 (+11.1%0)
Schmidt number 46.95 57.97 (-23.5%)
Stokes-Einstein radius 1.765 1.765 (0.0%0)




Forward CG strategy = Reverse CG strategy

Suppose that the pairwise potential is given, the optimization process
only considers the dynamics properties.

Set target properties (case N = 21 atp = 0.4)
ID,v]yp =[0.061,1.413]

The dissipative force is in the form of
F?](R) =y(1 - R/Rcut)S(VI]eI])eI]
Reverse CG strategy optimizes a parameter set [y, s| to obtain targets.

Technically, we employ generalized polynomial chaos (gPC) to construct
a surrogate model for DPD systems using a linear combination of a set of
special basis functions defined in the parameter space.

:V; S] — []7) §] + [5)/; 58] | diag(fll 52)

;)7, 5] =1100,3.0]

5,,85] = [50,1.0]

&1 and &, are 1.1.d. uniform random variables distributed on [-1,1].




Forward CG strategy = Reverse CG strategy

Define error function: Optimal choice: Ap,j, = 0.063
A [V — Vet N |D — Dyetl [v,s] = [144.0,2.42]
Vet Dot yields [D,v] = [0.064, 1.433]
4 0.15 — . r .
3.5
oy 0.1 €0.04 1
% s
@ 3 —_— N D
0.02 .
>005_ + :%ZO_DPD -
OF = = =3
o) — ] ] ]

50) 75 130 12 150 0 5 time 10 15

When reverse CG strategy iIs employed to construct CG models, even if the target
properties are achieved, one should not expect that other behavior besides the
targets can be correct automatically.

Z. Li, X. Bian, X. Yang and G.E. Karniadakis, J. Chem. Phys., 2016 (under review).



Comparison: Dynamic Properties (p=0.7)

Performance of Markovian DPD model (DPD) and non-Markovian DPD model
(NM-DPD) in reproducing the MD systems on the velocity autocorrelation

function (VACF): K = Tu/Tf = 2.77

0.3 1 ] I ]
0.2 i,
e
0.1 .
> 1 1 1 \3
0 005 01 015 02
time
O._
1 | | ]
-0.15 2 4 6 g 10

time

NM-DPD can reproduce correct short-time properties that are related
to how the system responds to high-frequency disturbances, which
cannot be captured by the Markovian-based DPD model.

However, computation of the time convolution is expensive.



Markovian system generating non-Markovian dynamics

Consider a Markovian system described by the stochastic differential

equatior (2Y =5 4) (5)+(5.) ()

where A,, = —A/,, £ is a vector of uncorrelated Gaussian random numbers with
(&i(1)€;(0)) = d50(t)
Let x = (P, s)’, the dynamics of x is the Ornstein-Uhlenbeck (OU) process

x = Ax + B,

By solving the equation of s we arrive at
t

s(t) = [T OTAS L ALPE) + Bug()]

— 00

Ceriotti et al., J. Chem. Theory Comput. (2010).



Markovian system generating non-Markovian dynamics

we can eliminate the auxiliary variables s from the dynamics of momentum P

and have
/ K(t —t"P(t)dt' + (1)

_ _/ Apse—(t_t’)AssBsg(t!)dt!

which corresponds to a non-Markovian dynamics.

If the memory kernel can be approximated by an arbitrary combination of

complex exponentials in the form of
K(t) = —A sexp(—tAgs)As,

then, the non-Markovian dynamics can be approximated by the Markovian
system whose momentum is coupled to auxiliary variables

()= 22) (5)+(5.) (&)

Ceriotti et al., J. Chem. Theory Comput. (2010).



Markovian system generating non-Markovian dynamics

Relation between the memory kernel K(t) and the matrix 4

A A . 0 1 Co a b
Suppose we have the matrix A = pp P3| = —c; a b|,whereA = [ ]
Asp Ass —¢, —b 0 —b 0

we can do the eigen-decomposition of A,
= QSQ™!
[ a_m mm‘ l“'v aZ-ab?

b 1, a
Ja?2-4b? 2I2\/a2—4b2
a+va2-4b2 b 1_
2

a
Ja2-4p2 2 2y a2-4b?

where %ai%\/az—ztbz are the eigenvalues of the matrix A;.

Then the kernel function K (t) can be computed by

K(t) = _Aps exp(_tAss) AS'p
— _ApsQexp(_tS)Q_lAsp

= exp(—2t) [(612 + c5)cos (“‘“’z‘“zt) + %sin(”bz‘“zt)l

Given a memory kernel K (t), which is fitted by K(t) = p exp(—qt) cos(rt + s)
Then, we have

a=2q, b= Jre+ qz, C1 = \/g cos(s)—%sin(s), Cy = \/% cos(s)+%sin(s)




Markovian system generating non-Markovian dynamics

The computed memory kernel can be fitted by a linear combination of many exponentially

damped oscillations

F©O = Aexp(—t/m) cos(@it + )

1 | | | 1
0.8 - -Ky(® |4 Parallel component is fitted
£ 0.6 —K;0 |1 by4terms
= == Fitting
¢ 0.4 - _ |
0.2} Perpendicular component is
ok fitted by 2 terms
| ] ]

]
0 0.2 0.44imel-0 0.8 1

Based on the fitting function, the coupling matrices can be constructed:

Aﬂs = (10, 0.280A, 0, 0.611A, 0, 0.658)\, 0, 0.339\ ) , A; = (10, 0907, 0, 0.421p ),
Al =-[AL]". A5, = —[An]
/ 19.66  60.55 0 0 0 0 0 0 \ 51.69 38.78 0 0
-60.55 0 0 0 0 0 0 0 i -38.78 0 0 0
0 0 26.30 23.870 0 0 0 A = 0 0 15.00 12.72
Al — 0 0 -23.87 0 0 0 0 0 0 0 12720
=2 0 0 0 0 23.55 39440 0 . . .
0 0 0 0 3044 0 0 0 To satlsz the'fluctuatlo.n-dlssmatlon theorem,
0 0 0 0 0 0 1499 715 the matrix B is determined by
\ 0 0 0 0 0 0 -7.15 0 ) BBT = kpT(A s + AL



Markovian system generating non-Markovian dynamics

0.3 ! ' ! '
0.03F T __\ip ' 1
) = h, - =o= = NM-DPD =
h02 ! :{U.GE —-+-—DPD-AUX

(@ o 3
0.3 5
-
- E
< | :
> i =
0.2 j; s

! | . 107 Coannl 0

0 0.1 0.2, 100 10 10

(b) time  (c) time
|Computational cost|yy—ppp B 8.3s 1938

|Computational cost|ppp_ayx  0.42s
Z. Li, H.S. Lee, E. Darve and G.E. Karniadakis, 2016 (to be submitted).



Mori-Zwanzig formalism as a practical computational tool

Carmen Hijén'", Pep Espafiol''?!, Eric Vanden-Eijnden'®, Rafael Delpado-Buscalionit™

=

1.5

RDF

FIG. 1= [a) One of the star polymers in the polymer melt in
a typical configuration. Seven monomers are lighter indicat-

ing one arm and the central monomer. It has f = 12 arms 0.06
of m = 6 monomers =ach. (b)) A sketch of the star poly-

mer model: all monomers interact with the purely repulsive 0.05p
Lennard-Jones potential (truncated at r. = 2'"s and shifted 0.04 '
to sero potential energy, @(r:] = 0) with units such that e = 1, '
m = 1 and o = 2.415. Neighbour monomers are attached by S0.03H
springs of stifness k& = 20¢/s” and move around the equilib- > L
rium distance :r:g, with T:'i' = 1.147z if i and j are non-center b0z
monomers and r:]":._;'f = l.l:ilg-cr, if i {= 0} is the center monomer. 0.01




Outline

4. Summary



We demonstrated that coarse-grained models can be constructed directly
from microscopic dynamics based on the Mori-Zwanzig (MZ) formalism.

Given correct CG force field, CG system can reproduce its underlying MD
system for both static and dynamic properties.

The Markovian assumption works well for the system with clear timescale
separation; the NM-DPD model has little improvement on the VACF
compared with Markovian DPD model.

When the timescales of a system are not fully separated, the NM-DPD
can reproduce correct short-time properties that are related to how the
system responds to high-frequency disturbances, which cannot be
captured by the Markovian-based DPD model.

A Markovian system with auxiliary variables coupled to momentum can be
employed to generate accurate non-Markvoian dynamics with much less
computational cost.

Z. Li, et al, Soft Matter, 10, 8659, 2014. Z. Li, et al. J. Chem. Phys., 2015, 143: 014101.
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