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Mori-Zwanzig can be used to:

1. Derive coarse-grained equations

2. Analyze systems with memory

3. Construct reduced-order models

4. Detect singularities - design meshes

5. Quantify uncertainty
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Radial Distribution Function (RDF)

𝜌𝜌𝜌𝜌(𝑟𝑟) is the conditional probability to
find another particle at a distance 𝑟𝑟 away
from the origin.

The radial distribution function (or pair correlation function) 𝑔𝑔(𝑟𝑟) in
a particle-based system describes how density varies as a function of
distance from a reference particle.

𝑔𝑔 𝑟𝑟 =
1
𝜌𝜌𝜌𝜌
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𝛿𝛿(𝑟𝑟 − 𝑟𝑟𝑖𝑖𝑖𝑖)

In discrete form: count the number of particles that lie in a spherical 
shell of radius 𝑟𝑟 and thickness 𝑑𝑑𝑑𝑑
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Number of pairs

Volume of the shell



Radial Distribution Function (RDF)

Solid

Liquid

Gas
Ideal gas: 𝑔𝑔(𝑟𝑟) = 1

Note: RDF can be measured experimentally using 
x-ray or neutron-scattering techniques.



Radial Distribution Function (RDF)
Thermodynamic quantities from the computed g(r): Internal Energy

𝐸𝐸 =
3
2
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Thermodynamic quantities from the computed g(r): Pressure

𝑃𝑃 = 𝜌𝜌𝑘𝑘𝐵𝐵𝑇𝑇 −
2
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Static structure factor: a mathematical description of how a material 
scatters incident radiation:

𝑆𝑆 𝑘𝑘 = 1 + 4𝜋𝜋𝜋𝜋�
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Velocity Autocorrelation Function (VACF)
Definition: 𝐶𝐶 𝑡𝑡 = 𝑽𝑽 𝑡𝑡 𝑽𝑽(0)
which reveals the underlying nature of the dynamical processes operating 
in a molecular system.

𝐷𝐷 =
1
3�0

∞
𝑑𝑑𝑑𝑑 𝑽𝑽 𝜏𝜏 𝑽𝑽(0)Diffusion constant is the integral of VACF:

𝐶𝐶 𝑡𝑡 =
3𝑘𝑘𝐵𝐵𝑇𝑇
𝑀𝑀

exp −
𝛾𝛾𝛾𝛾
𝑀𝑀

+
2𝑘𝑘𝐵𝐵𝑇𝑇
𝜌𝜌𝜌𝜌

4𝜋𝜋(𝐷𝐷 + 𝜈𝜈)𝑡𝑡 ⁄−3 2

Short time: 𝐶𝐶 𝑡𝑡 ∼ exp(−𝛾𝛾𝛾𝛾/𝑀𝑀)
Long time: 𝐶𝐶 𝑡𝑡 ∼ 𝑡𝑡−3/2 (Bulk), 𝐶𝐶 𝑡𝑡 ∼ 𝑡𝑡−5/2 or 𝑡𝑡−7/2 (confinement)  

Algebraic tail of the VACF:



The FDT quantifies the relation between the fluctuations in a system at thermal
equilibrium and the response of the system to applied perturbations.

For a particle-based stochastic system, a canonical ensemble is expected
only if the FDT is satisfied. Otherwise, the system cannot reach a thermal
equilibrium at the designed temperature.

The left-hand side describes fluctuations in 𝒙𝒙, the right-hand side relates to the energy dissipated
by the system when pumped by an oscillatory field 𝑓𝑓 𝑡𝑡 = 𝐹𝐹sin(𝜔𝜔𝜔𝜔 + 𝜙𝜙).

Fluctuation-Dissipation Theorem (FDT)

Let 𝒙𝒙 𝑡𝑡 be an observable of a dynamical system with Hamiltonian 𝐻𝐻0(𝒙𝒙) subject to thermal
fluctuations. 𝒙𝒙 𝑡𝑡 fluctuates around its mean value 𝑥𝑥 0 and the power spectrum of fluctuations is
denoted by 𝑆𝑆𝑥𝑥 𝜔𝜔 .
Consider a time-dependent field 𝑓𝑓(𝑡𝑡) that alters the Hamiltonian to 𝐻𝐻 𝒙𝒙 = 𝐻𝐻0 𝒙𝒙 + 𝑓𝑓 t 𝐱𝐱. The
response of 𝒙𝒙(𝑡𝑡) to 𝑓𝑓(𝑡𝑡) is characterized by the linear response function 𝜒𝜒 𝑡𝑡 of the system

𝒙𝒙(𝑡𝑡) = 𝒙𝒙 0 + �
−∞

𝑡𝑡
𝑓𝑓 𝜏𝜏 𝜒𝜒 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝑑𝑑

The fluctuation-dissipation theorem relates the power spectrum of 𝒙𝒙 to the imaginary part of the
Fourier transform 𝜒̂𝜒 𝜔𝜔 of the susceptibility 𝜒𝜒(𝑡𝑡)

𝑆𝑆𝑥𝑥 𝜔𝜔 =
2𝑘𝑘𝐵𝐵𝑇𝑇
𝜔𝜔

Im 𝜒̂𝜒(𝜔𝜔)

R. Kubo, The fluctuation-dissipation theorem. 1966. 



Conservative
fluid / system dependent

Dissipative 
frictional force, represents viscous 
resistance within the fluid –
accounts for energy loss

Forces exerted by particle J on particle I:

Random
stochastic part, makes up for lost 
degrees of freedom eliminated 
after the coarse-graining     ri 

rj 

rij 
i

j

DPD : Pairwise Interactions

Fluctuation-dissipation relation:
σ2 = 2 γ κΒΤ ωD= [ ωR]2
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Outline
1. Introduction

— Bottom-up coarse-graining

2. Foundation: Coarse-Graining
— Introduction of the Mori-Zwanzig formalism.
— Markovian model
— Non-Markovian model

3. Construction of coarse-grained model directly 
from MD simulation

— Static properties
— Dynamics properties

4. Summary



An initial guess of the CG force fields is posed at the beginning and many 
free parameters in a coarse-grained model are left undetermined.

Subsequently, an (iterative) inverse optimization is carried out to get the 
optimal free parameters so that target properties are obtained.

Target properties Optimization

Forward‐coarse‐graining procedure
The CG force fields are constructed directly from MD trajectories via the 
Mori-Zwanzig projection.

This procedure may require additional assumptions for simplification of 
formulation; in principle, there are no free parameters to be specified.

Reverse‐coarse‐graining procedure
Different coarse‐graining strategies

( No prior targets assigned )

Note: No guarantee of correct properties beyond targets.



Outline

2. Foundation: Coarse-Graining
— Introduction of the Mori-Zwanzig formalism
— Markovian model
— Non-Markovian model



Mesoscopic system
Coarse-grained model

DPD

Irrelevant variables 
are eliminated

Microscopic system 
All-atom model

MD

C
G

Coarse-Graining

CG: remove irrelevant degrees of freedom from a system
Dipalmitoylphosphatidylcholine

(DOPC)

C40H80NO8P





Dimension Reduction leads to memory effect and noise term.

Elimination of degrees of freedom from a system



Dissipative Particle Dynamics (DPD)

1. Mori-Zwanzig formulation

2. Direct construction of DPD from MD



Equation of Coarse-Grained System

CG (slower) Variables Atomistic (fast) variables



Mori-Zwanzig Formalism (Zwanzig, Nonequilibrium Statistical Mechanics, 2001)
Consider a n-dimensional system of ordinary differential equations



Mori-Zwanzig Formalism (Zwanzig, Nonequilibrium Statistical Mechanics, 2001)

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑡𝑡𝑡𝑡𝑥𝑥𝑗𝑗 = 𝑒𝑒𝑡𝑡𝑡𝑡𝐿𝐿𝑥𝑥𝑗𝑗 = 𝑒𝑒𝑡𝑡𝑡𝑡 ℙ + ℚ 𝐿𝐿𝑥𝑥𝑗𝑗 = 𝑒𝑒𝑡𝑡𝑡𝑡ℙ𝐿𝐿𝑥𝑥𝑗𝑗 + 𝑒𝑒𝐿𝐿𝐿𝐿ℚ𝐿𝐿𝑥𝑥𝑗𝑗

Using Dyson’s formula (Duhamel’s principle)

𝑒𝑒𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑡𝑡ℚ𝐿𝐿 + �
0

𝑡𝑡
𝑒𝑒 𝑡𝑡−𝜏𝜏 𝐿𝐿 ℙ𝐿𝐿𝑒𝑒𝜏𝜏ℚ𝐿𝐿𝑑𝑑𝑑𝑑

Consider ℙ + ℚ = 𝐼𝐼, we have 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑡𝑡𝑡𝑡𝑥𝑥𝑗𝑗 = 𝑒𝑒𝑡𝑡𝑡𝑡ℙ𝐿𝐿𝑥𝑥𝑗𝑗 + �

0

𝑡𝑡
𝑒𝑒 𝑡𝑡−𝜏𝜏 𝐿𝐿 ℙ𝐿𝐿𝑒𝑒𝜏𝜏𝜏𝜏𝜏ℚ𝐿𝐿𝑥𝑥𝑗𝑗𝑑𝑑𝑑𝑑 + 𝑒𝑒𝑡𝑡ℚ𝐿𝐿ℚ𝐿𝐿𝑥𝑥𝑗𝑗

We obtain the Mori-Zwanzig equation

This equation is exact and is an alternative way of writing the original 
system of ODEs. 



Mori-Zwanzig Formalism (Zwanzig, Nonequilibrium Statistical Mechanics, 2001)
If the coordinates and momenta of the center of mass of the coarse-grained 
particles are defined as CG variable to be resolved

𝑑𝑑
𝑑𝑑𝑡𝑡
𝑷𝑷𝐼𝐼 =

1
𝛽𝛽

𝜕𝜕
𝜕𝜕𝑹𝑹𝐼𝐼

ln𝝎𝝎 𝑹𝑹

−𝛽𝛽∑𝐽𝐽 ∫0
𝑡𝑡 𝑑𝑑𝑑𝑑 𝛿𝛿𝑭𝑭𝐼𝐼

𝑄𝑄 𝑡𝑡 − 𝑠𝑠 𝛿𝛿𝑭𝑭𝐽𝐽
𝑄𝑄 0

𝑇𝑇 𝑷𝑷𝐽𝐽
𝑀𝑀𝐽𝐽

+ 𝛿𝛿𝑭𝑭𝐼𝐼
𝑄𝑄(𝑡𝑡)

𝑀𝑀𝐼𝐼 = �
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𝑚𝑚I,𝑖𝑖𝑷𝑷𝐼𝐼 = �
I,𝑖𝑖

𝐩𝐩I,𝑖𝑖𝑹𝑹𝐼𝐼 =
1
𝑀𝑀𝐼𝐼

�
I,𝑖𝑖

𝑚𝑚I,𝑖𝑖𝐫𝐫I,𝑖𝑖

Define ℙ and ℚ as projection operators for a phase variable 𝑨𝑨

ℙ(∗) = ∗ 𝑨𝑨𝑇𝑇 𝑨𝑨𝑨𝑨𝑇𝑇 −1

ℚ = 𝐼𝐼 − ℙ

Given 𝑨𝑨 the coarse-grained momentum, we identify 𝑒𝑒𝑡𝑡𝑡𝑡𝑡ℚ𝐿𝐿𝑨𝑨 as the
random force 𝛿𝛿𝑭𝑭𝑄𝑄(𝑡𝑡). Finally, we have the equation of motion for
coarse-grained particles

Details see Kinjo, et. al., PRE 2007. Lei, et. al., PRE, 2010. Hijon, et. al., Farad. Discuss., 2010.

𝑨𝑨

𝑩𝑩

ℙ𝑩𝑩

ℚ𝑩𝑩



Mori-Zwanzig Formalism (Zwanzig, Nonequilibrium Statistical Mechanics, 2001)
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Atomistic Model

Consider an atomistic system consisting of N atoms, which are grouped 
into K clusters, and NC atoms in each cluster.

The equation of motion for CG particles
can be written as:

Details see Kinjo, et. al., PRE 2007. Lei, et. al., PRE, 2010. Hijon, et. al., Farad. Discuss., 2010.

Our interest is on the molecular or CG level :



Bottom-up coarse-grained model:

𝛿𝛿𝑭𝑭𝐼𝐼𝐼𝐼
𝑄𝑄 𝛿𝛿𝑭𝑭𝐼𝐼𝐼𝐼

𝑄𝑄 𝑇𝑇
𝐽𝐽≠𝐾𝐾 = 0



First term: Conservative Force:

Second term: Dissipative Force:

Evaluation of coarse-grained interactions:

𝛿𝛿𝑭𝑭𝐼𝐼𝐼𝐼
𝑄𝑄 𝛿𝛿𝑭𝑭𝐼𝐼𝐼𝐼

𝑄𝑄 𝑇𝑇
𝐽𝐽≠𝐾𝐾 = 0



The equation of motion (EOM) of coarse-grained particles resulting from the
Mori-Zwanzig projection is given by:

Conservative force Dissipative force Random force

Approximations for computing the coarse-grained forces:
 Pairwise decomposable: total force consists of pairwise forces 𝑭𝑭𝐼𝐼 ≈ ∑𝐼𝐼≠𝐽𝐽 𝑭𝑭𝐼𝐼𝐼𝐼
 Negligible many-body correlations: 𝛿𝛿𝑭𝑭𝐼𝐼𝐼𝐼

𝑄𝑄 𝛿𝛿𝑭𝑭𝐼𝐼𝐾𝐾
𝑄𝑄 𝑇𝑇

𝐽𝐽≠𝐾𝐾 = 0

Then, the above EOM can be written into its pairwise form:

where 𝑭𝑭𝐼𝐼𝐼𝐼 is the instantaneous force whose ensemble average 𝑭𝑭𝐼𝐼𝐼𝐼 is taken
as the conservative force, the memory kernel 𝑲𝑲𝐼𝐼𝐼𝐼 𝑡𝑡 = 𝛽𝛽 𝛿𝛿𝑭𝑭𝐼𝐼𝐼𝐼

𝑄𝑄 (𝑡𝑡) 𝛿𝛿𝑭𝑭𝐼𝐼𝐽𝐽
𝑄𝑄 (0)

𝑇𝑇
,

which satisfies the second fluctuation-dissipation theorem (FDT).

Coarse-Grained Modeling  - Summary



Ensemble average Dissipative force Random force

Harmonic chain

General Equation of Coarse-Grained particles



Question

General Coarse-grained Equation

Mesoscopic Dynamics

?

Coupled term



Langevin Equation

Markovian Approximation



DPD from Coarse-Grained Equation



(Cont'd)

Standard DPD
Transverse term 

Markovian approximation



This image cannot currently be displayed.



MD to DPD

Microscopic system (Molecular Dynamics)

Mesoscopic system (DPD)

Conservative force
Dissipative force

Random force

What is  Preserved?
What is  Lost?



Conservative potential (force) term





Dissipative force term
R

g 
= 

0.
95

R
g = 1.4397



(Cont'd)



Question

Microscopic System

Mesoscopic System

Fluid Structure?



Static properties



Question

Microscopic System

Mesoscopic System

Dynamic Properties?



Dynamic Properties



Let the difference of the instantaneous force from the mean force be the fluctuating force, 
e.g., 𝛿𝛿𝑭𝑭𝐼𝐼𝐼𝐼 𝑡𝑡 = 𝑭𝑭𝐼𝐼𝐼𝐼 𝑡𝑡 − 〈𝑭𝑭𝐼𝐼𝐼𝐼〉. By multiplying 𝑽𝑽𝐼𝐼𝐼𝐼𝑇𝑇 0 on both sides of above equation

Computing CG interactions
Pairwise Potential

Memory Kernel K(t)



Markovian DPD model

If the typical time scales of random force and momentum are
well separated, the Markovian assumption can be applied,
where the time correlation of random force is approximated by
the δ-function:

As a result, the EOM of DPD particles is given by:

𝑲𝑲 𝑡𝑡 ≈ 𝛾𝛾𝛾𝛾(t), where 𝛾𝛾 = ∫0
∞𝑲𝑲 𝑡𝑡 𝑑𝑑𝑑𝑑



Non-Markovian DPD model
Without the Markovian approximation, we have to preserve

the temporal memory of each pair in the NM-DPD model

To avoid prohibitive computational cost, we assume that the
memory is finite, e.g., history length 𝑁𝑁Δ𝑡𝑡. Then, the EOM of
NM-DPD particles is given by:



Fluctuation-Dissipation Theorem
Markovian DPD Model

𝛿𝛿𝑭𝑭𝐼𝐼𝐼𝐼
𝑄𝑄 (𝑡𝑡) 𝛿𝛿𝑭𝑭𝐼𝐼𝐼𝐼𝑅𝑅 (0) 𝑇𝑇 = 2𝑘𝑘𝐵𝐵𝑇𝑇𝛾𝛾𝐼𝐼𝐼𝐼𝛿𝛿(𝑡𝑡)

Non-Markovian DPD Model

the time correlation of random force is approximated by the δ-
function

Then, the random force is white noise, with variance given by

The FDT requires 𝛿𝛿𝑭𝑭𝐼𝐼𝐼𝐼
𝑄𝑄 (𝑡𝑡) 𝛿𝛿𝑭𝑭𝐼𝐼𝐼𝐼

𝑄𝑄 (0)
𝑇𝑇

= 𝑘𝑘𝐵𝐵𝑇𝑇𝐾𝐾𝐼𝐼𝐼𝐼(𝑡𝑡),

Then, the random force is colored noise.



Consider discrete time steps 𝑡𝑡𝑛𝑛 = 𝑛𝑛 ⋅ 𝛿𝛿𝛿𝛿, 𝑛𝑛 > 0.

We define )𝑅𝑅𝑛𝑛 = 𝑅𝑅 𝑡𝑡𝑛𝑛 ≡ 𝛿𝛿𝛿𝛿 𝑡𝑡𝑛𝑛 , 𝜃𝜃𝑛𝑛 = 𝜃𝜃(𝑡𝑡𝑛𝑛 ≡ 𝐾𝐾(𝑡𝑡𝑛𝑛)
In the discrete form, the second FDT is   〈𝑅𝑅𝑛𝑛𝑅𝑅𝑚𝑚𝑇𝑇 〉 = 𝑘𝑘𝐵𝐵𝑇𝑇 ⋅ 𝜃𝜃𝑛𝑛−𝑚𝑚
Let 0 ≤ 𝑛𝑛 ≤ 𝑁𝑁, we can use a periodic extension, which does not affect the 
values within the first 𝑁𝑁 steps. We write 𝜃𝜃𝑛𝑛 as

2 /ˆ
N

ikn N
n n

n N
e πθ θ −

=−

= ∑
Define �𝛼𝛼𝑘𝑘 = 𝜃̂𝜃𝑘𝑘0.5, the inverse Fourier transform is given by

2 /1 ˆ
2 1

N
iks N

s k
n N

e
N

πα α
=−

=
+ ∑

Let 𝑊𝑊𝑛𝑛 be identically distributed random variables, we generate the colored 
noise by N

n B s n s
s N

R k T Wα +
=−

= ∑

In this case, the Fourier transform is reduced to a discrete Fourier transform.

N

n s s n
s N

θ α α +
=−

= ∑

Colored noise generator 1 (Fourier transform):



Colored noise generator 1 (Fourier transform): Test Case

)𝑓𝑓(𝑡𝑡 = 𝑅𝑅𝑛𝑛𝑅𝑅𝑚𝑚

𝐿𝐿time = 0.39

Π = 0.78 = 2𝐿𝐿time



0

n B s n s
s N

R k T Wα +
=−

= ∑

Let 𝑊𝑊𝑛𝑛 be identically distributed random variables, the random force 𝑅𝑅𝑛𝑛 is 
given by

where 𝛼𝛼𝑛𝑛 are undetermined coefficients. Then, the correlation of the random 
force can be computed by 

0 0

0

           

n m B s t n s m t
s N t N

B s n m s B n m
s N

R R k T

k T k T f

α α δ

α α

+ − −
=− =−

− + −
=−

=

= = ⋅

∑ ∑

∑
To satisfy the second FDT, we need 

n m B n mR R k Tθ −=

Numerical optimization techniques can be used to obtain a set of coefficients 
𝛼𝛼𝑛𝑛 by minimization of 𝐿𝐿2 𝑓𝑓𝑛𝑛−𝑚𝑚 − 𝜃𝜃𝑛𝑛−𝑚𝑚 .

Colored noise generator 2 (Optimization):



Colored noise generator 2 (Optimization):  Test Case

)𝑓𝑓(𝑡𝑡 = 𝑅𝑅𝑛𝑛𝑅𝑅𝑚𝑚

𝐿𝐿time = 0.39

Smooth VACF
No periodicity
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3. Construction of coarse-grained model directly 
from MD simulation

— Static properties
— Dynamics properties



Consider a well-defined atomistic system consisting of N atoms which
are grouped into K clusters, and Nc atoms in each cluster.

WCA Potential   + FENE Potential

Microscopic system:  

NVT ensemble with Nose-Hoover thermostat.
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Microscopic system to be reproduced



Microscopic system to be reproduced

Two test systems:



Coarse-Grained force field
Definition of the directions for pairwise interactions between neighboring 
clusters:

1. Parallel direction:

2. Perpendicular direction #1:

3. Perpendicular direction #2:

/ | |
ij i j

ij ij ijr
= −

=

r r r
e r

( )
1 / | |

ij i j

ij ij ij ij ij

ij ij ijv

⊥

⊥ ⊥ ⊥

= −

= − ⋅ ⋅

=

v v v

v v v e e

e v

2 1
ij ij ij
⊥ ⊥= ×e e e



• CG force field obtained directly from MD simulations
• No freedom to adjust parameters

Coarse-Grained force field



MD DPD

Comparison

Atomistic Model Coarse-Grained Model

Hard Potential CG Potential

Coarse Graining



Comparison: Static Properties
Radial distribution function (RDF) and Pressure (P) of MD, DPD and NM-DPD
systems:

Observation: Including non-Markovian memory in the DPD system does
not change its performance on reproducing RDF.
Reason: RDF of a DPD system is only determined by the conservative force,
and the changes of non-conservative force do not affect RDF, even if the
non-Markovian memory is introduced in the simulations.



Both Markovian model and Non-Mavkovian model can reproduce the original
MD system well.
Including memory does not change the results significantly, which indicates the
Markovian assumption can be applied safely.

Comparison: Dynamic Properties (ρ=0.4)
Performance of Markovian DPD model (DPD) and non-Markovian DPD model
(NM-DPD) in reproducing the MD systems on the velocity autocorrelation
function (VACF):

MD:  𝐷𝐷 = 0.119, 𝜈𝜈 = 0.965
DPD: 𝐷𝐷 = 0.120, 𝜈𝜈 = 0.954
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𝑀𝑀 is the mass of a spherical particle.
𝛾𝛾 is the Stokes viscous drag coefficient.

𝜏𝜏𝑝𝑝 = 𝑀𝑀/𝛾𝛾Timescales:

Short time: 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ~ exp(−𝑡𝑡/𝜏𝜏𝑝𝑝)
Long time: 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ~ 𝑡𝑡−3/2

Quantities MD DPD (error)

Pressure 0.191 0.193 (+1.0%)

Diffusivity
(Integral of VACF) 0.119 0.120 (+0.8%)

Viscosity 0.965 0.954 (-1.1%)

Schmidt number 8.109 7.950 (-2.0%)

Stokes-Einstein radius 1.155 1.158 (+0.3%)

Comparison: Dynamic Properties (ρ=0.4)
The curve of Velocity Auto-Correlation Function (VACF) contains 
dynamic properties of the system



Discussion: Many-Body effect (ρ=0.4)



𝑁𝑁𝑐𝑐 = 21

Quantities MD DPD (error)
Pressure 0.198 0.194 (-2.0%)

Diffusivity
(Integral of VACF) 0.061 0.060 (-1.6%)

Viscosity 1.413 1.457 (+3.1%)
Schmidt number 23.16 24.28 (+4.8%)

Stokes-Einstein radius 1.539 1.517 (-1.4%)

Discussion: Many-Body effect (ρ=0.4)

𝑁𝑁𝑐𝑐 = 31

Quantities MD DPD (error)
Pressure 0.210 0.202(-3.8%)

Diffusivity
(Integral of VACF) 0.040 0.036 (-10.0%)

Viscosity 1.878 2.087 (+11.1%)
Schmidt number 46.95 57.97 (-23.5%)

Stokes-Einstein radius 1.765 1.765 (0.0%)



Forward CG strategy vs Reverse CG strategy
Suppose that the pairwise potential is given, the optimization process 
only considers the dynamics properties.

Set target properties (case 𝑁𝑁𝐶𝐶 = 21 at 𝜌𝜌 = 0.4)

𝐷𝐷, 𝜈𝜈 𝑀𝑀𝑀𝑀 = 0.061, 1.413

Reverse CG strategy optimizes a parameter set 𝛾𝛾, 𝑠𝑠 to obtain targets.

𝑭𝑭𝐼𝐼𝐼𝐼𝐷𝐷 𝑅𝑅 = 𝛾𝛾 1 − 𝑅𝑅/𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠 𝑽𝑽𝐼𝐼𝐼𝐼𝒆𝒆𝐼𝐼𝐼𝐼 𝒆𝒆𝐼𝐼𝐼𝐼

Technically, we employ generalized polynomial chaos (gPC) to construct
a surrogate model for DPD systems using a linear combination of a set of
special basis functions defined in the parameter space.

The dissipative force is in the form of

𝛾𝛾, 𝑠𝑠 = 𝛾̅𝛾, 𝑠̅𝑠 + 𝛿𝛿𝛾𝛾 ,𝛿𝛿𝑠𝑠 ⋅ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜉𝜉1, 𝜉𝜉2
𝛾̅𝛾, 𝑠̅𝑠 = 100, 3.0
𝛿𝛿𝛾𝛾 ,𝛿𝛿𝑠𝑠 = 50, 1.0

𝜉𝜉1 and 𝜉𝜉2 are i.i.d. uniform random variables distributed on [-1,1].



Forward CG strategy vs Reverse CG strategy
Define error function:

Δ =
𝜈𝜈 − 𝜈𝜈ref
𝜈𝜈ref

+
𝐷𝐷 − 𝐷𝐷ref
𝐷𝐷ref

Optimal choice: Δmin = 0.063
𝛾𝛾, 𝑠𝑠 = [144.0, 2.42]

yields 𝐷𝐷, 𝜈𝜈 = [0.064, 1.433]

When reverse CG strategy is employed to construct CG models, even if the target
properties are achieved, one should not expect that other behavior besides the
targets can be correct automatically.

Z. Li, X. Bian, X. Yang and G.E. Karniadakis, J. Chem. Phys., 2016 (under review).



Comparison: Dynamic Properties (ρ=0.7)
Performance of Markovian DPD model (DPD) and non-Markovian DPD model
(NM-DPD) in reproducing the MD systems on the velocity autocorrelation
function (VACF):

NM-DPD can reproduce correct short-time properties that are related
to how the system responds to high-frequency disturbances, which
cannot be captured by the Markovian-based DPD model.
However, computation of the time convolution is expensive.



Markovian system generating non-Markovian dynamics

Ceriotti et al., J. Chem. Theory Comput. (2010).

Consider a Markovian system described by the stochastic differential 
equation 



Markovian system generating non-Markovian dynamics

Ceriotti et al., J. Chem. Theory Comput. (2010).

which corresponds to a non-Markovian dynamics.
If the memory kernel can be approximated by an arbitrary combination of 
complex exponentials in the form of 

then, the non-Markovian dynamics can be approximated by the Markovian
system whose momentum is coupled to auxiliary variables



Markovian system generating non-Markovian dynamics

Suppose we have the matrix 𝑨𝑨 =
𝑨𝑨𝑝𝑝𝑝𝑝 𝑨𝑨𝑝𝑝𝑝𝑝
𝑨𝑨𝑠𝑠𝑠𝑠 𝑨𝑨𝑠𝑠𝑠𝑠

=
0 𝑐𝑐1 𝑐𝑐2
−𝑐𝑐1 𝑎𝑎 𝑏𝑏
−𝑐𝑐2 −𝑏𝑏 0

, where 𝑨𝑨𝑠𝑠𝑠𝑠 = 𝑎𝑎 𝑏𝑏
−𝑏𝑏 0

Relation between the memory kernel 𝑲𝑲(𝒕𝒕) and the matrix 𝑨𝑨

we can do the eigen-decomposition of 𝑨𝑨𝑠𝑠𝑠𝑠
𝑨𝑨𝑠𝑠𝑠𝑠 = 𝑄𝑄𝑄𝑄𝑄𝑄−1

= −𝑎𝑎− 𝑎𝑎2−4𝑏𝑏2
2𝑏𝑏 −𝑎𝑎+ 𝑎𝑎2−4𝑏𝑏2

2𝑏𝑏
1 1

𝑎𝑎− 𝑎𝑎2−4𝑏𝑏2
2 0

0 𝑎𝑎+ 𝑎𝑎2−4𝑏𝑏2
2

𝑏𝑏

𝑎𝑎2−4𝑏𝑏2
1
2+

𝑎𝑎

2 𝑎𝑎2−4𝑏𝑏2
−𝑏𝑏

𝑎𝑎2−4𝑏𝑏2
1
2 −

𝑎𝑎

2 𝑎𝑎2−4𝑏𝑏2

where 12𝑎𝑎±1
2 𝑎𝑎2−4𝑏𝑏2 are the eigenvalues of the matrix 𝑨𝑨𝑠𝑠𝑠𝑠. 

Then the kernel function 𝐾𝐾(𝑡𝑡) can be computed by

𝐾𝐾 𝑡𝑡 = −𝑨𝑨𝑝𝑝𝑝𝑝 exp −𝑡𝑡𝑨𝑨𝑠𝑠𝑠𝑠 𝑨𝑨𝑠𝑠𝑠𝑠
= −𝐴𝐴𝑝𝑝𝑝𝑝𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 −𝑡𝑡𝑡𝑡 𝑄𝑄−1𝐴𝐴𝑠𝑠𝑠𝑠
= …

= exp −𝑎𝑎
2𝑡𝑡 𝑐𝑐12 + 𝑐𝑐22 cos 4𝑏𝑏2−𝑎𝑎2

2 𝑡𝑡 + 𝑐𝑐2
2−𝑐𝑐1

2 𝑎𝑎

4𝑏𝑏2−𝑎𝑎2
sin 4𝑏𝑏2−𝑎𝑎2

2 𝑡𝑡

Given a memory kernel 𝐾𝐾 𝑡𝑡 , which is fitted by 𝐾𝐾 𝑡𝑡 = 𝑝𝑝 exp −𝑞𝑞𝑞𝑞 cos(𝑟𝑟𝑟𝑟 + 𝑠𝑠)
Then, we have  

𝑎𝑎 = 2𝑞𝑞,  𝑏𝑏 = 𝑟𝑟2 + 𝑞𝑞2,  𝑐𝑐1 = 𝑞𝑞
2 cos 𝑠𝑠 −

𝑟𝑟𝑟𝑟
2𝑞𝑞sin(𝑠𝑠), 𝑐𝑐2 = 𝑞𝑞

2 cos 𝑠𝑠 +
𝑟𝑟𝑟𝑟
2𝑞𝑞sin(𝑠𝑠)



Markovian system generating non-Markovian dynamics
The computed memory kernel can be fitted by a linear combination of many exponentially 
damped oscillations

𝑓𝑓 𝑡𝑡 = �
𝑖𝑖=1

𝑛𝑛
Λ𝑖𝑖 exp −𝑡𝑡/𝜏𝜏𝑖𝑖 cos(𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜑𝜑𝑖𝑖)

Based on the fitting function, the coupling matrices can be constructed:

Parallel component is fitted 
by 4 terms

Perpendicular component is 
fitted by 2 terms

To satisfy the fluctuation-dissipation theorem, 
the matrix 𝑩𝑩 is determined by

𝑩𝑩𝑩𝑩𝑇𝑇 = 𝑘𝑘𝐵𝐵𝑇𝑇(𝑨𝑨𝑠𝑠𝑠𝑠 + 𝑨𝑨𝑠𝑠𝑠𝑠𝑇𝑇 )



Markovian system generating non-Markovian dynamics

Z. Li, H.S. Lee, E. Darve and G.E. Karniadakis, 2016 (to be submitted).

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑁𝑁𝑁𝑁−𝐷𝐷𝐷𝐷𝐷𝐷

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐷𝐷𝐷𝐷𝐷𝐷−𝐴𝐴𝐴𝐴𝐴𝐴
=

8.3𝑠𝑠
0.42𝑠𝑠

= 19.8





Outline

4. Summary



• We demonstrated that coarse-grained models can be constructed directly
from microscopic dynamics based on the Mori-Zwanzig (MZ) formalism.

• Given correct CG force field, CG system can reproduce its underlying MD
system for both static and dynamic properties.

• The Markovian assumption works well for the system with clear timescale
separation; the NM-DPD model has little improvement on the VACF
compared with Markovian DPD model.

• When the timescales of a system are not fully separated, the NM-DPD
can reproduce correct short-time properties that are related to how the
system responds to high-frequency disturbances, which cannot be
captured by the Markovian-based DPD model.

• A Markovian system with auxiliary variables coupled to momentum can be
employed to generate accurate non-Markvoian dynamics with much less
computational cost.

Summary

Z. Li, et al, Soft Matter, 10, 8659, 2014. Z. Li, et al. J. Chem. Phys., 2015, 143: 014101.
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