Exceptional service in the national interest

Coupling Local and Non-local Problems:

Alternating Schwarz and Optimization-based Approaches

Mauro Perego, Marta D'Elia and Kyungjoo Kim

Center for Computing Research, Sandia National Labs,

CM4 Summer Workshop, June 21, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. SAND2016-5948 PE

We compare alternating Schwarz method with optimization-based approach for coupling nonlocal and local operators.

- Requirements: Octave or Matlab with optimization toolbox
- git clone https://github.com/kyungjoo-kim/cm4.git your-local-directory

For given f and θ , we seek solution u of two point boundary value problem:

$$\begin{array}{rcl} -\Delta u &=& f \quad x \in \Omega, \\ u &=& \theta \quad x \in \Gamma. \end{array}$$

Warm Up: Local and Nonlocal 1D Poisson Problem

Weak form of 1D local diffusion model is

$$\int_{\Omega} \nabla u_l \nabla z_l \, dx = \int_{\Omega} f_l z_l \, dx.$$

3

Sandia National Laboratories

Warm Up: Local and Nonlocal 1D Poisson Problem

Weak form of 1D nonlocal diffusion model is

$$\int_{\Omega^+} \int_{\Omega^+ \cap B_{\varepsilon}(x)} \frac{1}{\varepsilon^2 |x-y|} \left(u_n(y) - u_n(x) \right) \left(z_n(y) - z_n(x) \right) \, dy dx = \int_{\Omega} f_n(x) z_n \, dx.$$

Exercise: Complexity of Local and Nonlocal Operators

Sandia National Laboratorie

Compare the local and nonlocal operators.

```
%% N : # of elements
%% epsilon : nonlocal interaction radius
%% test : test problem id, see exact_solution.m and source_integral.m
%% 1. local operator
run_local_problem(N, epsilon, test)
%% 2. nonlocal operator
run_nonlocal_problem(N, epsilon, test)
```

How expensive is constructing the nonlocal operator (nnz and integration cost) ?

Manufactured Solution in Test Problems

5

Manufactured Solution in Test Problems

test 0: Solution with discontinuity

test 0: Source function

Comparison of Local and Nonlocal Operators

4

With decreasing epsilon, the nonlocal operator becomes close to the local operator

$$-Lu = -\Delta u + \varepsilon^2 D^4(u) + O(\varepsilon^4)$$

where $D^4(u)$ is a combination of the 4th derivatives of u.

```
%% N : # of elements
%% epsilon : nonlocal interaction radius
%% niter : # of test runs
run_comparison_local_nonlocal(N, epsilon, niter)
```


Exercise: Alternating Schwarz and Optimization-based Coupling

% NN $-$ # of elements in nonlocal region
℅ NL — # of elements in local region
% epsilon — interaction radius
% test — problem id
<pre>run_coupling_alternate(NN, NL, epsilon, test)</pre>
run_coupling_optimize(NN, NL, epsilon, test)

- Confirm that the coupled solutions converge for test problems.
- Check the convergence for different overlapping regions.
- Try to use different mesh resolutions for a more realistic problem (fine mesh for nonlocal operator and coarse mesh for local operator).

Sandia National Laboratories

Sandia National Laboratorie

Examples of Glued Solution

Play with the code changing parameters:

% problem domain setup problem_domain = [0 1.75]; nonlocal_domain = [0 1]; local_domain = [0.75 1.75];

8

Exercise: Difference in Two Coupling Strategies

Summary

- Both alternating Schwarz and optimization-based coupling strategies glue the solutions without modifying the original equations and properties.
- For more realistic problems with different physics models, the optimization-based coupling approach provides robust and unique solution.
- Optimization-based approach can provide application specific object function to define coupling mechanism.