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Outline

- Why we need to couple different models

- Brief introduction of classic Schwarz methods

- PNP and cDFT equations for electrostatics

- Some facts about nonlocal models

- Coupling PNP-cDFT with Schwarz

- Optimization-based coupling

- Nonlocal Poisson equation as a proxy for Peridynamics

- Coupling of local and nonlocal Poisson equations

Hands-on sessions (with Kyungjoo Kim):

- Schwarz and Optimization-based couplings of local and nonlocal Poisson equations
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Why we need coupling techniques

Examplel: Domain Decomposition (same model, multiple domains)

- Problem restricted to each subdomain is smaller and
requires less resources (memory and CPU).

- Iterative parallel solution: problem on subdomains can
be solved independently and then at each iteration values
at the interfaces are “communicated” to neighbor
domains.

- Problem can be solved in parallel over multiple
processes.

- Domain Decomposition methods are often used to
create preconditioners for iterative solvers.

Typical interface conditions for Poisson-like problems:
1. Continuity of solution
2. Continuity of solution derivative normal to the surface
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Why we need coupling techniques

Example2: Modeling systemic circulation (geometric multiscale*)

Aorta, 3D model:
Navier-Stokes

1d model
Euler

How to couple NS (aorta)
With 1D Euler (other vessels)?

And what about
Fluid-Structure Interaction?

0d model:

I = flux

V = pressure
Resistance = Viscosity

Capacity — Compliance How to couple NS (large vessel)

with Darcy (porous media)?

NS: vector equation.
Darcy: scalar equation.

\ / Liver, 3D model:

Darcy flow

Simulations by Cristiano Malossi (CMCS), LifeV

*Quarteroni, Formaggia, Veneziani, Cardiovascular mathematics, Springer, 2009



Alternating Schwarz methods
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Alternating Schwarz Method

—Au=0 in
proper b.c. on 0

Laplace problem: {

\J

Q0 Q9

[’y 'y

Qb I:QlﬂQQ, QIZQlLJQQ

—AuFT =0 in O —AuETh =0 inQy
1 k(+1

ulfJ“ = ulg on I'y USH = u1(+ ) on I's

other b.c. other b.c.

- Converges with elliptic operators
- Rate of convergence depends on the size of the overlap
- Overlap needed for convergence

: Sandia
mian?l )
Toselli and Widlund, Domain Decomposition Methods — Algorithms and Theory, Springer, 2005 s




(Nonoverlapping) Coupling Methods

Ql QQ

I' =0 N0

Dirichlet-Neumann methods

—AuFTt =0 in Oy ~Auktt =0 in €2y
ub Tt =k on I'y O, ukJrl Opuitt on Ty
other b.c. other b.c.

Robin-Robin methods

—Aukﬂ =0 in {4
alu’fH + 8nulf+1 = aqub + 8nu’§+1 on I'y
other b.c.

—AusTt =0 in (2
o ugﬂ + O, uijrl =« u’f“ + O, ukJrl on I'y
other b.c.

We can select a1 and as to improve convergence:

- M. Gander, Optimized Schwarz Methods, SIAM J. Numer. Anal., 2006



Poisson-Nerst-Planck and classic Density Functional Theory
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Poisson-Nernst-Planck (PNP) equations

Poisson equation for electric potential

¢ : electric potential
div (—eVo) = ¢q q: charge density
€ : dielectric constant

Nernst Planck equation for each ion type

9 pPo . density of ion «
ZPa + div(®,) =0 D, : diffusion constant for ion o
ot D. ®, : ion flux
P, == pav — DyVps — Z57*pa VO Zo : valence of ion a, values: +1, £2, ...
. temperature
q:=¢€ Za Pa<a b

e : electron charge

K : Boltzmann gas constant
Boundary and initial conditions:

O
€E— —

an 1o
Nernst-Planck: p, = p24, or @, -n = ®Pd

Poisson: ¢ = ¢"¢, or

0pa
ot
if #, =0, v =0 — Poisson Boltzmann Approx

if — =0 — steady state PNP




Classic Density Functional Theory (cDFT)

Equivalently, the ion flux can be expressed in terms of the chemical potential

@o = Pad — DOf Y Pa kT o Pa V Qb = Pau LOHOO& ' Mo ( Use formula: )
ez V - ! V
1 €Za In Pa o

chemical potential

Add terms to the chemical potential that account for ion correlation and finite size

OF V : external chemical potential
DFT
Ko = In (pa) "‘ KT + (V + dpa ) F:  excess Helmholtz free energy

. s cor dis FP . hard-sphere free energy
F(p) = F*(p) + F" (p) + FP(p) Feorr . gsecond-order charge correlations
Fdisp - mean-field interactions

The excess Helmholtz free energy terms are nonlocal terms:

aFCOI'I‘
= — Z/ ps(y)cap(lx —y|)dy
3 Q

0P

- R Roth, R Evans, A Lang, and G Kahl. Fundamental measure theory for hard-sphere
mixtures revisited: the white bear version. J Phys-Condens Mat, 2002.




Facts about Nonlocal Models
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Facts about Nonlocal Models

e Nonlocal operators L(u)(x) depend on the values of w in a finite/infinite
neighbour of x

e Interactions can occur at distance, without contact
e Boundary conditions need to be prescribed on an € border of the domain

e Used in many scientific and engineering applications, where the material
dynamics depends on microstructure, e.g. nonlocal electrostatic or brittle
fracture

e Often, under some regularity assumption, as the horizon & goes to zero,
or equivalently as we take a macroscopic look at the model, the nonlocal
model reduces to a local model

£(u)(x) = /B | ulwellz —yay

&

/

— Q. Du, M.D. Gunzburger, R. Lehoucq, and K. Zhou, Analysis and approximation

of nonlocal diffusion problems with volume constraints. SIAM Review, 2012



Comparison of Local and Nonlocal discretizations

Local d_u
operator dr |,

Depends on the values that u takes
in an mfinitestmum neighbour of x

Simple discretization:

d_u
dx

_ w(@ig) —uli—1)

Li+1 — Lj—1

Ly

#evaluations: 2 (in one dimension)

o e </0 o 0\; oo
\\ //
R

#evaluations: 2d (in d dimesions, gradient)

Nonzeros of discretization matrices grow
linearly with the number of points,
or as h™%.

Nonocal
operator

/ u(y)e(|z — yl)dy
B(x,e)

Depends on the values that u takes
in a finite/infinite neighbour of x

Simple discretization:

> ulzye(lz; —aiwy

|£13 j—x4 | <e
. € . . .
# evaluations: = QE (in one dimension)

i~ N

L @ L L @ o @
N -
! |

T 600000000

od

# evaluations: ~ VB(O,l)m (in d dimensions)

- Nonzeros of discretization matrices grow as
~ the square of the number of unknowns
or as h™2¢,




PNP-DFT Coupling

Work by J. Cheung, A. Frishknecht, M. Perego, P. Bochev
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Comparing PNP and DFT models

Problem: Semi-permeable membrane

pT =0.016
o® =0.7
¢=0

p* = 0.00016
¥ = 0.7
¢=4

cDFT simulation

Densities

(membrane
attracts anions,
repels cations)

Densities
T

PNP simulation

0.08

Elec. Pot.
-

(ﬁ(‘)()

0 20

|
Elect. Pot.
[
T

100

120 0
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Alternating Schwarz Coupling for PNP-DFT

Q1 QQ
PNP cDFT PNP cDFT
unknowns unknowns
Oy := Q1 Ny P \ p \
Q. C Q1 NQy N P
¢ ~ TS 9
\\\j: M
. \
( Lene(pit,01) =0 in /
< p]f+1 - pIQ€ on Fl
vt = gk on I'y

| other b.c.
2 k+1 .

Lprr(ps ", ¢2) =0 in Q5

P§+1 = Plf+1 on le

k1l k41 T
3 2 — %1 e on 1o
ez

s = (o) + o <V > ) (i) onTy

| other b.c.
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J. Cheung, A. Frishknecht, M. Perego, P. Bochev, in prep, 2016



PNP-cDFT Coupling

Semi-permeable membrane

pT =0.016 ,0 = 0.00016
Overlap regions p¥ =0.7 ¥ =0.7
PNP DFT PNP
A = c e
8 . | | | | (membrane
attracts anions,
—p [ <pT> repels cations)
p | <p >
o 0 ) {pu} 1

Hybrid solution:

Convergence:

- about 4 iterations converges in “eyeball
norm”

- 10 iterations for increment to be less than
le-4 in L2 norm

- initializing the problem with PNP solved
everywhere increases significantly the
convergence.

' e Yy
\’ -:_""-.-
P

L J Douglas Frlnk A Thompson, and A G Salinger. Applying molecular / La"al;‘g‘m’?[‘m
theory to steady-state diffusing systems. J Chem Phys, 2000




PNP-cDFT Coupling

What if we move the overlap region close to the membrane?

]_D 1 T T T T
- Method is not converging.
3l - DFT solution is oscillatory next to the membrane
and the Dirichlet condition passed to PNP can vary
. significantly at each iteration
-This is a possible issue with Shwartz coupling. In
ar the following we will present a coupling method
that, in principle, should not suffer from this issue.
2 -
0
_2 1 I I 1 I
0 20 40 60 80 100 120




PNP-cDFT Coupling

2D problem with two monovalent ions:

rh = 2, Tro = 1
Z1 = 1, 29 = —1
¢ =
P1,2 — 0.016

4o = £0.05

P1,2 — 0.016

e
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PNP-cDFT Coupling

Hybrid (PNP-cDFT) solution Hybrid vs. ¢cDFT: 2x speedup, 0.4x memory usage

phyb
1
40 — p:yb Qbhyb
40 . : , S 40 .
108
35 35| | 35 L
Lo {0.02
30 30+
30 F b
1046
25 25 | | 10.01 25 L
> 20 . ] =201
0.01
15 sk | 15t
10 ok | w0}
0.00
5 5| - i 5
0 0
0 0
0 10 20 30 40 0 10 20
X % X
DET
P ;,‘;DFT HOFT
— 40 — 40
0.8 35 | | 35k
10.02
10.7
30 F E 30F
0.6
25 F E 70.01 251
=20 F 1 =201
0.01
15 F B 15 F
10 r B 10 L
0.00
st - 1 st
0 0 0
0 10 20 30 40 0 10 20
X X

Full cDFT solution

J. Cheung, A. Frishknecht, M. Perego, P. Bochev, in prep, 2016



Optimization-based Coupling

Work by P. Bochev, M. D’Elia, M.Perego, D. Littlewood
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Optimization-based Coupling

Research approach: optimization-based coupling: 0,
* Traditional coupling:

* Solve the models subject to coupling constraints

* Optimization coupling reverses the roles:

* Minimize coupling error subject to the models

. 1 1
min J(Ul,UQ) = —/ |u1 - U2|2 dx = ||u1 - u2||3,9b
Qp

u1,u2,01,02 2 5
s.t.
£1(’u,1) =0 In Ql £2(u2) =0 1In Ql
u; = 01 on Fl Uo — 02 on FQ

other b.c\/u&hé b.c.

Control variables

Related work: Lions (2001), Quarteroni (2000), Gunzburger (2000), Du (2001), Hughes (2009), Oden (201 Sandia
Karniadakis (2014-Stochastic PDE), Abdulle (2014 — multiscale multiphase flow) mmm



Optimization-based Coupling

Pros:

» extremely flexible
> Works with non-matching grids, non-coincident interfaces.
> Coupled models need not to share the same discretization, e.g. it can couple finite
elements and particle discretizations.
* Functional to be minimized can be specific of applications, e.g. could be a mismatch of
fluxes.
> Control variables can also be chosen in a fairly arbitrary way (e.g. we can control
Neumann conditions)
» Basic idea applicable to diverse modeling scenarios:
Nonlocal + local electrostatic potential for proteins (CM4), Atomistic-to-continuum
coupling.
 Is provably stable & admits rigorous coupling and discretization error analysis.
» At each optimization iteration, models can be solved separately. Good for legacy codes.

Cons:

It is often more expensive then other coupling strategies
» Requires a fast/robust optimization solver to make the coupling efficient
» Adjoints of the coupled models might be needed to improve convergence




Local to Nonlocal Optimization-based coupling

— M. D'Elia, P. Bochev, Optimization-Based Coupling of Nonlocal and Local
Diffusion Models, Materials Research Society Proceedings, 2014

— M. D'Elia, M. Perego, P. Bochev, D. Littlewood, A coupling strategy for
local and nonlocal diffusion models with mixed volume constraints and
boundary conditions, Computers & Mathematics with Applications, 2016

— M. D'Elia, P. Bochev, Formulation, Analysis and Computation of an
optimization-based Local-to-Nonlocal Coupling Method, 2015




Model Problems

The nonlocal problem

{Eun = f, €0

u, = o, €Q,
where o, € V(Q) and f,, € L%(Q) and

Llu@) = [ (uly) - u@) (e, y) dy.

Kernel (depends on material properties)

Kernel: we assume

{v(w,y)>0 Vy € B.(x)
v(x,y) =0 VyeQt\ B.(z),

B(x)={yeQt: |[t—y|<e zeQ}

~
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Model Problems

The nonlocal problem

{Eun = f, €0

u, = 0o, c ﬁ,
where o, € V(Q) and f,, € L%(Q) and

Llu@) = [ (uly) - u@) (e, y) dy.

Nonnegative kernel
(depends on material properties)

0f)

The local problem

local diffusion model given by the Poisson equation

—Au; = fl e Q)
w = o3 €01,

where o; € H2(9) and f; € L2(Q)




Local to Nonlocal Coupling

State equations:

Uy, =
Up ——

fn €,
0, x €,
0 x € (),

—Aul
uj
Uuj

(i)
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Local to Nonlocal Coupling

Optimization problem:

1

1
min  J(u,,u;) = = Uy —uy)? de = = — |3
'Ll,n,ulaefn,ael ( " l) 2 /S;b( " l) 2 ||un UZ |O,Qb
—Eun = fn T c S}/n —Aul = fl T c Ql
s.t. u, = 0, xecll, w = 0, xel,
u, = 0 x € () wy = 0 xelj.
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Local to Nonlocal Coupling

Optimization problem:

1

1
min  J(u,,u;) = = w, —uy)’de = - — 2
'U;naulaenael ( " l) 2 /{;b( " l) 2 ||un UZ |O’Qb
—Eun = fn T c S}/n —Aul = fl T c Ql
S.t. u, =0, xec, uy = 6 xel.
u, = 0 x € () wy = 0 xelj.

~

control variables (0,,,0;) € ©,, x ©; = {(on,07) : 0, € Vﬁi(ﬂc), o] € H%(Fc)}
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The Algorithm

discretized control variables: 6,,;, and 6y,

A gradient—based algorithm

Given an initial guess 6%, 69, for k=0,1,2,...

1. solve the state equations and compute J, — Independently

dJp
d(enha th) (gﬁh 791kh

2. compute the gradient of the functional and evaluate it

3. Use 1. and 2. to compute the increments §(6%,) and §(0% ) — BFGS
algorithm

4. Set OFFt =0k 4+ 5(0F), and 05 = 0F + 5(0F ).




Local to Nonlocal Coupling: Numerical Tests, 1d
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Problem Setting (1D)

s
------------------------------------------------------------------------------------------------------------------------
. -

— i — H
—e 0 0.75 1 1+4e¢ 1.75
A A A A
homogeneous Dirichlet 0, 0,, homogeneous Dirichlet
Up — 0 U — 0
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Numerical Tests

1
2z — g

Kernel: v(z,y) =
Accuracy tests:

o u, =u =x° —

o f,=—2+ 1222 +¢?
o fi =2+ 1222

(x —e,x+¢€) 2

£ h  e(uy) rate  e(u) rate  e(6,) rate
273 9.70e-03 - 2.95e-02 = - 4.86e-03 L

24 268e-03 1.86 7.54e-03 1.97 1.20e-03 2.01

0.065 27° 7.02e-04 1.93 1.90e-03 1.99 3.11e-04 1.95

276 1.78¢-04 1.98 4.76e-04 2.00 7.89e-05 1.98

277  4.48e-05 1.99 1.19e-04 2.00 1.99e-05 1.98

e
National



Local to Nonlocal Coupling: Numerical Experiment, 3d
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Local to Nonlocal Coupling

Optimization problem:

1 1

. J 7 - 5 n 2d — S ||Un — :
L (o) =5 [ (=) dr = s w3,
( —Luy = fn x €y ( —Au = fi ey
w, = 0, x¢€cfl w =60, xel.
1. d
5509 u, = 0 xzecQb and 9 w = 0 xelP
| —N(Gu,) = 0 xeQl | Vyg'n = 0 zel},

~

control variables (0,,,0;) € ©,, x ©; = {(op,07) : 0, € ‘7@_(90), o] € H%(I‘c)}
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The Discretization

Goal: exploit the flexibility of the method and use two fundamentally differ-
ent discretization schemes for the local and the nonlocal models

( —Lu, = fn x € ), ( —Au; = fl x €

< Up = 6, Q. ) u = 0 xzel,

u, = 0 =xeQb w = 0 xel?

 N(Gu,) = 0 =xzecQl  Vuyyn = 0 xel)Y
strong form + particle method weak form -+ finite element method
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The Discretization

Goal: exploit the flexibility of the method and use two fundamentally differ-
ent discretization schemes for the local and the nonlocal models

( —Lu, = fn x € ), ( —Au; = fl x €

) Up — Hn T Qc ) up = 91 xel,

u, = 0 =xeQb w = 0 xel?

| —N(Gu,) = 0 x e QN  Vuyyn = 0 xel)Y
strong form + particle method weak form -+ finite element method

Lula) ~ 2% (uly,) - ul@)) 1@ y:) Vi,
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The Discretization

Note: the nonlocal solution is defined on points while the local solution is a
piecewise polynomial over the computational domain

A modified functional: pointwise misfit

1 & 1
Ja(un, w) = 3 S ((Snun)i — (Siw);)” = 5 [Snttn — Sy ).

=1

S,,: nonlocal selection matrix

Slt (Sl)z'j == qu (.CUZ), where gbj is the j—th FE basis

Sandia
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Geometry

Coupling Peridigm and Albany

peridigm.sandia.qgov software.sandia.qgov/albanvy/

trilinos.orqg/packages/rol
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Geometry

Coupling Peridigm and Albany

peridigm.sandia.qgov software.sandia.qgov/albanvy/

trilinos.orqg/packages/rol




Geometry

Nonlocal domain: := [0, 2.5] x [0, 0.5] x [0, 0.5]
Local domain: := [1.5, 4] x [0, 0.5] x [0, 0.5]

Overlap domain: := [1.5, 2.5] x [0, 0.5] x [0, 0.5]

3 1
le—yll <e

Kernel: v(z,y) =< 7" ||z —y|
0 otherwise,




The Patch Test

a

*

ral = € — =, prescribed in 0 <z < 0.5 and on z = 4

Analytic solution: u

w

LtN control: initialized at zeroin 2 <zx <25andon xz =1.5

I 5.000e-04

0

I—E.UDUe—Dd
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Solution with a Crack

PHPSPIFSPRPRS &m dOQ..OU".’.’t'
BT SRR et awWYw
T e eee Yy &tt&wwmvcv d
Pk ke




Solution with a Crack

PR K T Ot X w. dct. L T 2 2 2 1 i

T LT, N T T Tl Y | e

AWy e TS RN *1
cmww

““‘"’"’WC smN

s SRR NN Sw »

AWy s s s e

e G Lt E T e I50008_03
S S T PN W - ;
“in - tetete ate % R
S i *’b“‘v”&d“d’- e e 0

I—5.00Cle—03
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Solution with a Crack

0.006 . . .
Nonlocal solution (bottom)
0.004 | o®
o
°®
..
0.002 | o
.
o
o
0 3000000OOOOOOOLRIOOOOOOOOOONNK
@
..
-0.002 | o
®
°®
°®
-0.004 ; ...
Nonlocal Model Initial Values ¢
0.006 Nonlocal Model Final Values @

-1.5 -1 -0.5 0 0.5 1 1.5

points along length of the bar /
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Solution with a Crack

0.006
Nonlocal solution (top)
0.004 | o*’
[ ]
..
..
o
0.002 | °®
oo’
0 20000000 OOOOOOOOOOOONK
(]
0.002 | o’
..
o
[
..
-0.004 ¢ ..‘
Nonlocal Model Initial Values ¢
0.006 Nqnlocal Modgl Final Valpes .

-1.5 -1 -0.5 0 0.5 1 1.5

points along length of the bar /
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Solution with a Crack

0.006 . . . . .
Local solution (bottom) . X
0.004 ¢ ®
[ J
[ ]

0.002 |

0 XXXX XXXX
-0.002 |

o
[
-0.004 | ©
) ¢ ° Local Model Initial Values X

0,006 | | ILocal Modgl Final Valpes ®

-1.5 -1 -0.5 0 0.5 1 1.5

points along length of the bar / %EE?},MS



Solution with a Crack

0.006 . . . . .
Local solution (top) w
®
0.004 | o
[ ]
[ ]
0.002 ¢
0 XXXX XXXX
-0.002 |
o
[
-0.004 | o
) 4 ° Local Model Initial Values X
0,006 | | ILocal Modlel Final Valpes .
-1.5 -1 -0.5 0 0.5 1 1.5

points along length of the bar / %EE?},MS



Conclusions

- Presented two nonlocal problems: c¢DFT and nonlocal Poisson

- Couplings needed to
1. save computational time,
2. make feasible (given limited resources) problems too complex to be solved
3. use legacy codes, e.g. particle methods for nonlocal Poisson and FE for local
one.

- Schwarz is in general rather robust but can fail when coupled models behave
significantly differently on overlap region.

- Optimization-based coupling is a very general/flexible framework, although it
can be expensive.

- Alternative methods not discussed here include the Blending method and the
Arlequin method.

Thank you!
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