Coupling of Multi-fidelity Models Applications to PNP-cDFT and local-nonlocal Poisson equations

P. Bochev, J. Cheung, M. D'Elia, A. Frishknecht, K. Kim, M. Parks, M. Perego

CM4 summer school, Stanford, June 21st

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sandia number: SAND2016-6036 PE

Outline

- Why we need to couple different models
- Brief introduction of classic Schwarz methods
- PNP and cDFT equations for electrostatics
- Some facts about nonlocal models
- Coupling PNP-cDFT with Schwarz
- Optimization-based coupling
- Nonlocal Poisson equation as a proxy for Peridynamics
- Coupling of local and nonlocal Poisson equations

Hands-on sessions (with Kyungjoo Kim):

- Schwarz and Optimization-based couplings of local and nonlocal Poisson equations

Why we need coupling techniques

Example1: Domain Decomposition (same model, multiple domains)

- Problem restricted to each subdomain is smaller and requires less resources (memory and CPU).
- Iterative parallel solution: problem on subdomains can be solved independently and then at each iteration values at the interfaces are "communicated" to neighbor domains.
- Problem can be solved in parallel over multiple processes.
- Domain Decomposition methods are often used to create preconditioners for iterative solvers.

Typical interface conditions for Poisson-like problems:

- 1. Continuity of solution
- 2. Continuity of solution derivative normal to the surface

Why we need coupling techniques

Example2: Modeling systemic circulation (geometric multiscale*)

Simulations by Cristiano Malossi (CMCS), LifeV

Aorta, 3D model: Navier-Stokes

How to couple NS (aorta) With 1D Euler (other vessels)?

And what about Fluid-Structure Interaction?

How to couple NS (large vessel) with Darcy (porous media)?

NS: vector equation. Darcy: scalar equation.

Liver, 3D model: Darcy flow

Alternating Schwarz methods

Alternating Schwarz Method

Laplace problem:
$$\begin{cases} -\Delta u = 0 & \text{in } \Omega \\ \text{proper b.c.} & \text{on } \partial \Omega \end{cases}$$

$$\Omega_b := \Omega_1 \cap \Omega_2, \quad \Omega := \Omega_1 \cup \Omega_2$$

$$\begin{cases}
-\Delta u_1^{k+1} = 0 & \text{in } \Omega_1 \\
u_1^{k+1} = u_2^k & \text{on } \Gamma_1 \\
\text{other b.c.}
\end{cases}$$

$$\begin{cases}
-\Delta u_1^{k+1} = 0 & \text{in } \Omega_1 \\
u_1^{k+1} = u_2^k & \text{on } \Gamma_1 \\
\text{other b.c.}
\end{cases} \begin{cases}
-\Delta u_2^{k+1} = 0 & \text{in } \Omega_2 \\
u_2^{k+1} = u_1^{k(+1)} & \text{on } \Gamma_2 \\
\text{other b.c.}
\end{cases}$$

- Converges with elliptic operators
- Rate of convergence depends on the size of the overlap
- Overlap needed for convergence

(Nonoverlapping) Coupling Methods

Dirichlet-Neumann methods

$$\begin{cases}
-\Delta u_1^{k+1} = 0 & \text{in } \Omega_1 \\
u_1^{k+1} = u_2^k & \text{on } \Gamma_1 \\
\text{other b.c.}
\end{cases} \qquad \begin{cases}
-\Delta u_2^{k+1} = 0 & \text{in } \Omega_2 \\
\partial_n u_2^{k+1} = \partial_n u_1^{k+1} & \text{on } \Gamma_2 \\
\text{other b.c.}
\end{cases}$$

Robin-Robin methods

$$\begin{cases}
-\Delta u_1^{k+1} = 0 & \text{in } \Omega_1 \\
\alpha_1 u_1^{k+1} + \partial_n u_1^{k+1} = \alpha_1 u_2^k + \partial_n u_2^{k+1} & \text{on } \Gamma_1 \\
\text{other b.c.}
\end{cases}$$

$$\begin{cases}
-\Delta u_2^{k+1} = 0 & \text{in } \Omega_2 \\
\alpha_2 u_2^{k+1} + \partial_n u_2^{k+1} = \alpha_2 u_1^{k+1} + \partial_n u_1^{k+1} & \text{on } \Gamma_2 \\
\text{other b.c.}
\end{cases}$$

We can select α_1 and α_2 to improve convergence:

- M. Gander, Optimized Schwarz Methods, SIAM J. Numer. Anal., 2006

Poisson-Nerst-Planck and classic Density Functional Theory

Poisson-Nernst-Planck (PNP) equations

Poisson equation for electric potential

$$\operatorname{div} (-\epsilon \nabla \phi) = q$$

 ϕ : electric potential

q: charge density

 ϵ : dielectric constant

Nernst Planck equation for each ion type

$$\frac{\partial \rho_{\alpha}}{\partial t} + \operatorname{div}(\mathbf{\Phi}_{\alpha}) = 0$$

$$\mathbf{\Phi}_{\alpha} := \rho_{\alpha} \mathbf{v} - D_{\alpha} \nabla \rho_{\alpha} - \frac{D_{\alpha} e z_{\alpha}}{kT} \rho_{\alpha} \nabla \phi$$

$$q := e \sum_{\alpha} \rho_{\alpha} z_{\alpha}$$

 ρ_{α} : density of ion α

 D_{α} : diffusion constant for ion α

 Φ_{α} : ion flux

 z_{α} : valence of ion α , values: $\pm 1, \pm 2, \ldots$

T: temperature

e: electron charge

K: Boltzmann gas constant

Boundary and initial conditions:

Poisson:
$$\phi = \phi^{\text{bd}}$$
, or $-\epsilon \frac{\partial \phi}{\partial n} = q_{\sigma}^{\text{bd}}$

Nernst-Planck:
$$\rho_{\alpha} = \rho_{\alpha}^{\mathrm{bd}}$$
, or $\mathbf{\Phi}_{\alpha} \cdot \mathbf{n} = \Phi_{\alpha}^{\mathrm{bd}}$

if
$$\frac{\partial \rho_{\alpha}}{\partial t} = 0 \rightarrow \text{ steady state PNP}$$

if
$$\Phi_{\alpha} = 0$$
, $\mathbf{v} = \mathbf{0} \rightarrow \text{Poisson Boltzmann Approx.}$

Classic Density Functional Theory (cDFT)

Equivalently, the ion flux can be expressed in terms of the chemical potential

$$\begin{split} & \boldsymbol{\Phi}_{\alpha} := \rho_{\alpha} \mathbf{u} - D_{\alpha} \nabla \rho_{\alpha} - \frac{D_{\alpha} e z_{\alpha}}{kT} \rho_{\alpha} \nabla \phi = \rho_{\alpha} \mathbf{u} - D_{\alpha} \rho_{\alpha} \nabla \mu_{\alpha}, \\ & \mu_{\alpha} = \ln \left(\rho_{\alpha} \right) + \frac{e z_{\alpha}}{KT} \phi \\ & \qquad \qquad \begin{pmatrix} \text{Use formula:} \\ \nabla \left(\ln \left(\rho_{\alpha} \right) \right) = \frac{1}{\rho_{\alpha}} \nabla \rho_{\alpha} \end{pmatrix} \end{split}$$
 chemical potential

Add terms to the chemical potential that account for ion correlation and finite size

$$\mu_{\alpha}^{cDFT} = \ln(\rho_{\alpha}) + \frac{ez_{\alpha}}{KT}\phi + \left(V + \frac{\partial F^{\text{ex}}}{\partial \rho_{\alpha}}\right)$$
 $V: \text{ external chemical potential } F^{\text{ex}}: \text{ excess Helmholtz free energy}$

$$F^{\rm ex}(\rho) = F^{\rm hs}(\rho) + F^{\rm corr}(\rho) + F^{\rm disp}(\rho)$$
 $F^{\rm hs}$: hard-sphere free energy $F^{\rm corr}$: second-order charge correlations

 F^{disp} : mean-field interactions

The excess Helmholtz free energy terms are **nonlocal** terms:

$$\frac{\partial F^{\text{corr}}}{\partial \rho_{\alpha}} = -\sum_{\beta} \int_{\Omega} \rho_{\beta}(\mathbf{y}) c_{\alpha\beta}(|\mathbf{x} - \mathbf{y}|) d\mathbf{y}$$

- R Roth, R Evans, A Lang, and G Kahl. Fundamental measure theory for hard-sphere mixtures revisited: the white bear version. J Phys-Condens Mat, 2002.

Facts about Nonlocal Models

Facts about Nonlocal Models

- Nonlocal operators $\mathcal{L}(u)(\boldsymbol{x})$ depend on the values of u in a finite/infinite neighbour of \boldsymbol{x}
- Interactions can occur at distance, without contact
- Boundary conditions need to be prescribed on an ϵ border of the domain
- Used in many scientific and engineering applications, where the material dynamics depends on microstructure, e.g. nonlocal electrostatic or brittle fracture
- Often, under some regularity assumption, as the horizon ε goes to zero, or equivalently as we take a macroscopic look at the model, the nonlocal model reduces to a local model

$$\mathcal{L}(u)(\boldsymbol{x}) = \int_{B(x,\varepsilon)} u(y)c(|x-y|)dy$$

Comparison of Local and Nonlocal discretizations

Local operator
$$\frac{du}{dx}\Big|_{x}$$

Depends on the values that u takes in an infinitesimum neighbour of \mathbf{x}

Simple discretization:

$$\left| \frac{du}{dx} \right|_{x_i} \approx \frac{u(x_{i+1}) - u(x_{i-1})}{x_{i+1} - x_{i-1}}$$

#evaluations: 2 (in one dimension)

#evaluations: 2d (in d dimesions, gradient)

Nonzeros of discretization matrices grow **linearly** with the number of points, or as h^{-d} .

Nonocal operator
$$\int_{B(x,\varepsilon)} u(y)c(|x-y|) dy$$

Depends on the values that u takes in a finite/infinite neighbour of \mathbf{x}

Simple discretization:

$$\sum_{|x_j - x_i| < \varepsilon} u(x_j) c(|x_j - x_i|) w_j^h$$

evaluations: $\approx 2\frac{\varepsilon}{h}$ (in one dimension)

evaluations: $\approx V_{\mathcal{B}(0,1)} \frac{\varepsilon^d}{h^d}$ (in d dimensions)

Nonzeros of discretization matrices grow as the **square** of the number of unknowns Sandia or as h^{-2d} .

Work by J. Cheung, A. Frishknecht, M. Perego, P. Bochev

Comparing PNP and DFT models

Problem: Semi-permeable membrane

cDFT simulation

(membrane attracts anions, repels cations)

PNP simulation

Alternating Schwarz Coupling for PNP-DFT

$$\Omega_b := \Omega_1 \cap \Omega_2$$

$$\Omega_\varepsilon \subset \Omega_1 \cap \Omega_2$$

$$\begin{cases} \mathcal{L}_{\text{PNP}}(\boldsymbol{\rho}_1^{k+1}, \phi_1) = 0 & \text{in } \Omega_1 \\ \boldsymbol{\rho}_1^{k+1} = \boldsymbol{\rho}_2^k & \text{on } \Gamma_1 \\ \phi_1^{k+1} = \phi_2^k & \text{on } \Gamma_1 \\ \text{other b.c.} \end{cases}$$

$$\begin{cases} \mathcal{L}_{\text{cDFT}}(\boldsymbol{\rho}_{2}^{k+1}, \boldsymbol{\phi}_{2}) = 0 & \text{in } \Omega_{2} \\ \boldsymbol{\rho}_{2}^{k+1} = \boldsymbol{\rho}_{1}^{k+1} & \text{on } \Omega_{\varepsilon} \\ \boldsymbol{\phi}_{2}^{k+1} = \phi_{1}^{k+1} & \text{on } \Gamma_{2} \\ \boldsymbol{\mu}_{2}^{k+1} = \ln\left(\boldsymbol{\rho}_{1}^{k+1}\right) + \frac{ez}{KT}\phi_{1}^{k+1} + \left(V + \frac{\partial F^{\text{ex}}}{\partial \boldsymbol{\rho}}\right)\left(\boldsymbol{\rho}_{1}^{k+1}\right) & \text{on } \Gamma_{2} \\ \text{other b.c.} \end{cases}$$

Semi-permeable membrane

(membrane attracts anions, repels cations)

Hybrid solution:

Convergence:

- about 4 iterations converges in "eyeball norm"
- 10 iterations for increment to be less than 1e-4 in L2 norm
- initializing the problem with PNP solved everywhere increases significantly the convergence.

What if we move the overlap region close to the membrane?

- Method is not converging.
- DFT solution is oscillatory next to the membrane and the Dirichlet condition passed to PNP can vary significantly at each iteration
- -This is a possible issue with Shwartz coupling. In the following we will present a coupling method that, in principle, should not suffer from this issue.

2D problem with two monovalent ions:

J. Cheung, A. Frishknecht, M. Perego, P. Bochev, in prep, 2016

Optimization-based Coupling

Work by P. Bochev, M. D'Elia, M.Perego, D. Littlewood

Optimization-based Coupling

Research approach: optimization-based coupling:

- Traditional coupling:
 - Solve the models subject to coupling constraints
- Optimization coupling reverses the roles:
 - Minimize coupling error subject to the models

$$\min_{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2} J(\boldsymbol{u}_1, \boldsymbol{u}_2) = \frac{1}{2} \int_{\Omega_b} |\boldsymbol{u}_1 - \boldsymbol{u}_2|^2 d\boldsymbol{x} = \frac{1}{2} \|\boldsymbol{u}_1 - \boldsymbol{u}_2\|_{0, \Omega_b}^2$$

s.t.

$$\begin{cases} \mathcal{L}_1(\boldsymbol{u}_1) = 0 & \text{in } \Omega_1 \\ \boldsymbol{u}_1 = \boldsymbol{\theta}_1 & \text{on } \Gamma_1 \\ \text{other b.c.} \end{cases} \qquad \begin{cases} \mathcal{L}_2(\boldsymbol{u}_2) = 0 & \text{in } \Omega_1 \\ \boldsymbol{u}_2 = \boldsymbol{\theta}_2 & \text{on } \Gamma_2 \\ \text{other b.c.} \end{cases}$$

Control variables

Optimization-based Coupling

Pros:

- extremely flexible
 - → Works with non-matching grids, non-coincident interfaces.
 - → Coupled models need **not** to share the same discretization, e.g. it can couple finite elements and particle discretizations.
 - Functional to be minimized can be specific of applications, e.g. could be a mismatch of fluxes.
 - → Control variables can also be chosen in a fairly arbitrary way (e.g. we can control Neumann conditions)
- Basic idea applicable to diverse modeling scenarios: Nonlocal + local electrostatic potential for proteins (CM4), Atomistic-to-continuum coupling.
- Is provably stable & admits rigorous coupling and discretization error analysis.
- At each optimization iteration, models can be solved separately. Good for legacy codes.

Cons:

- It is often more expensive then other coupling strategies
- Requires a fast/robust optimization solver to make the coupling efficient
- Adjoints of the coupled models might be needed to improve convergence

Local to Nonlocal Optimization-based coupling

- M. D'Elia, P. Bochev, Optimization-Based Coupling of Nonlocal and Local
 Diffusion Models, *Materials Research Society Proceedings*, 2014
- **M. D'Elia, M. Perego, P. Bochev, D. Littlewood**, A coupling strategy for local and nonlocal diffusion models with mixed volume constraints and boundary conditions, *Computers & Mathematics with Applications*, 2016
- M. D'Elia, P. Bochev, Formulation, Analysis and Computation of an optimization-based Local-to-Nonlocal Coupling Method, 2015

Model Problems

The nonlocal problem

$$\begin{cases}
-\mathcal{L}u_n &= f_n \in \Omega \\
u_n &= \sigma_n \in \widetilde{\Omega},
\end{cases}$$

where $\sigma_n \in \widetilde{V}(\widetilde{\Omega})$ and $f_n \in L^2(\Omega)$ and

$$\mathcal{L}(u(\boldsymbol{x})) := \int_{\mathbb{R}^n} (u(\boldsymbol{y}) - u(\boldsymbol{x})) \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y}.$$

Kernel (depends on material properties)

Kernel: we assume

$$\begin{cases} \gamma(\boldsymbol{x}, \boldsymbol{y}) \ge 0 & \forall \, \boldsymbol{y} \in B_{\varepsilon}(\boldsymbol{x}) \\ \gamma(\boldsymbol{x}, \boldsymbol{y}) = 0 & \forall \, \boldsymbol{y} \in \Omega^{+} \setminus B_{\varepsilon}(\boldsymbol{x}), \end{cases}$$

$$B_{\varepsilon}(\boldsymbol{x}) = \{ \boldsymbol{y} \in \Omega^{+} : |\boldsymbol{x} - \boldsymbol{y}| < \varepsilon, \ \boldsymbol{x} \in \Omega \}$$

Model Problems

The nonlocal problem

$$\begin{cases}
-\mathcal{L}u_n &= f_n \in \Omega \\
u_n &= \sigma_n \in \widetilde{\Omega},
\end{cases}$$

where $\sigma_n \in \widetilde{V}(\widetilde{\Omega})$ and $f_n \in L^2(\Omega)$ and

$$\mathcal{L}(u(\boldsymbol{x})) := \int_{\mathbb{R}^n} (u(\boldsymbol{y}) - u(\boldsymbol{x})) \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y}.$$

Nonnegative **kernel** (depends on material properties)

The local problem

local diffusion model given by the Poisson equation

$$\begin{cases} -\Delta u_l &= f_l \in \Omega \\ u_l &= \sigma_l \in \partial \Omega, \end{cases}$$

where $\sigma_l \in H^{\frac{1}{2}}(\partial\Omega)$ and $f_l \in L^2(\Omega)$

State equations:

$$\begin{cases}
-\mathcal{L}u_n &= f_n \quad \boldsymbol{x} \in \Omega_n \\
u_n &= \theta_n \quad \boldsymbol{x} \in \widetilde{\Omega}_c \\
u_n &= 0 \quad \boldsymbol{x} \in \widetilde{\Omega}_i
\end{cases}
\qquad
\begin{cases}
-\Delta u_l &= f_l \quad \boldsymbol{x} \in \Omega_l \\
u_l &= \theta_l \quad \boldsymbol{x} \in \Gamma_c \\
u_l &= 0 \quad \boldsymbol{x} \in \Gamma_i.
\end{cases}$$

$$\begin{cases}
-\Delta u_l &= f_l & \boldsymbol{x} \in \Omega_l \\
u_l &= \theta_l & \boldsymbol{x} \in \Gamma_c \\
u_l &= 0 & \boldsymbol{x} \in \Gamma_i.
\end{cases}$$

Optimization problem:

$$\min_{u_n, u_l, \theta_n, \theta_l} J(u_n, u_l) = \frac{1}{2} \int_{\Omega_b} (u_n - u_l)^2 d\mathbf{x} = \frac{1}{2} ||u_n - u_l||_{0, \Omega_b}^2$$

s.t.
$$\begin{cases}
-\mathcal{L}u_n &= f_n & \boldsymbol{x} \in \Omega_n \\
u_n &= \theta_n & \boldsymbol{x} \in \widetilde{\Omega}_c \\
u_n &= 0 & \boldsymbol{x} \in \widetilde{\Omega}_i
\end{cases} \qquad \begin{cases}
-\Delta u_l &= f_l & \boldsymbol{x} \in \Omega_l \\
u_l &= \theta_l & \boldsymbol{x} \in \Gamma_c \\
u_l &= 0 & \boldsymbol{x} \in \Gamma_i.
\end{cases}$$

Optimization problem:

$$\min_{u_n, u_l, \theta_n, \theta_l} J(u_n, u_l) = \frac{1}{2} \int_{\Omega_b} (u_n - u_l)^2 d\mathbf{x} = \frac{1}{2} ||u_n - u_l||_{0, \Omega_b}^2$$

s.t.
$$\begin{cases}
-\mathcal{L}u_n &= f_n \quad \boldsymbol{x} \in \Omega_n \\
u_n &= \boldsymbol{\theta_n} \quad \boldsymbol{x} \in \widetilde{\Omega}_c \\
u_n &= 0 \quad \boldsymbol{x} \in \widetilde{\Omega}_i
\end{cases} \qquad \begin{cases}
-\Delta u_l &= f_l \quad \boldsymbol{x} \in \Omega_l \\
u_l &= \boldsymbol{\theta_l} \quad \boldsymbol{x} \in \Gamma_c \\
u_l &= 0 \quad \boldsymbol{x} \in \Gamma_i.
\end{cases}$$

control variables $(\theta_n, \theta_l) \in \Theta_n \times \Theta_l = \{(\sigma_n, \sigma_l) : \sigma_n \in \widetilde{V}_{\widetilde{\Omega}_i}(\widetilde{\Omega}_c), \, \sigma_l \in H^{\frac{1}{2}}(\Gamma_c)\}$

The Algorithm

discretized control variables: θ_{nh} and θ_{lh}

A gradient-based algorithm

Given an initial guess $\theta_{nh}^0, \theta_{lh}^0$, for k = 0, 1, 2, ...

- 1. solve the state equations and compute $J_h \to \mathbf{Independently}$
- 2. compute the gradient of the functional and evaluate it $\frac{\mathrm{d}J_h}{\mathrm{d}(\theta_{nh},\theta_{lh})}\Big|_{(\theta_{nh}^k,\theta_{lh}^k)}$
- 3. Use 1. and 2. to compute the increments $\delta(\theta_{nh}^k)$ and $\delta(\theta_{lh}^k) \to \mathbf{BFGS}$ algorithm
- 4. Set $\theta_{nh}^{k+1} = \theta_{nh}^k + \delta(\theta_{nh}^k)$, and $\theta_{lh}^{k+1} = \theta_{lh}^k + \delta(\theta_{lh}^k)$.

Local to Nonlocal Coupling: Numerical Tests, 1d

Problem Setting (1D)

Numerical Tests

Kernel:
$$\gamma(x,y) = \frac{1}{\varepsilon^2 |x-y|} \chi(x-\varepsilon, x+\varepsilon)$$

Accuracy tests:

- $\bullet \ u_n = u_l = x^2 x^4$
- $f_n = -2 + 12x^2 + \varepsilon^2$
- $f_l = -2 + 12x^2$.

arepsilon	h	$e(u_n)$	rate	$e(u_l)$	rate	$e(\theta_n)$	rate
0.065	2^{-3}	9.70e-03	-	2.95e-02	-	4.86e-03	-
	2^{-4}	2.68e-03	1.86	7.54e-03	1.97	1.20e-03	2.01
	2^{-5}	7.02e-04	1.93	1.90e-03	1.99	3.11e-04	1.95
	2^{-6}	1.78e-04	1.98	4.76e-04	2.00	7.89e-05	1.98
	2^{-7}	4.48e-05	1.99	1.19e-04	2.00	1.99e-05	1.98

Local to Nonlocal Coupling: Numerical Experiment, 3d

Optimization problem:

$$\min_{u_n, u_l, \theta_n, \theta_l} J(u_n, u_l) = \frac{1}{2} \int_{\Omega_b} (u_n - u_l)^2 d\mathbf{x} = \frac{1}{2} ||u_n - u_l||_{0, \Omega_b}^2$$

s.t.
$$\begin{cases}
-\mathcal{L}u_n &= f_n \quad \boldsymbol{x} \in \Omega_n \\
u_n &= \boldsymbol{\theta_n} \quad \boldsymbol{x} \in \widetilde{\Omega}_c \\
u_n &= 0 \quad \boldsymbol{x} \in \Omega_n^D \\
-\mathcal{N}(\mathcal{G}u_n) &= 0 \quad \boldsymbol{x} \in \widetilde{\Omega}_n^N
\end{cases} \text{ and } \begin{cases}
-\Delta u_l &= f_l \quad \boldsymbol{x} \in \Omega_l \\
u_l &= \boldsymbol{\theta_l} \quad \boldsymbol{x} \in \Gamma_c \\
u_l &= 0 \quad \boldsymbol{x} \in \Gamma_l^D \\
\nabla u_l \cdot \mathbf{n} &= 0 \quad \boldsymbol{x} \in \Gamma_l^N,
\end{cases}$$

control variables $(\theta_n, \theta_l) \in \Theta_n \times \Theta_l = \{(\sigma_n, \sigma_l) : \sigma_n \in \widetilde{V}_{\widetilde{\Omega}_i}(\widetilde{\Omega}_c), \, \sigma_l \in H^{\frac{1}{2}}(\Gamma_c)\}$

The Discretization

Goal: exploit the flexibility of the method and use two fundamentally different discretization schemes for the local and the nonlocal models

$$\begin{cases}
-\mathcal{L}u_n &= f_n \quad \boldsymbol{x} \in \Omega_n \\
u_n &= \theta_n \quad \boldsymbol{x} \in \widetilde{\Omega}_c \\
u_n &= 0 \quad \boldsymbol{x} \in \Omega_n^D \\
-\mathcal{N}(\mathcal{G}u_n) &= 0 \quad \boldsymbol{x} \in \widetilde{\Omega}_n^N
\end{cases}$$

$$\begin{cases}
-\Delta u_l &= f_l \quad \boldsymbol{x} \in \Omega_l \\
u_l &= \theta_l \quad \boldsymbol{x} \in \Gamma_c \\
u_l &= 0 \quad \boldsymbol{x} \in \Gamma_l^D \\
\nabla u_l \cdot \mathbf{n} &= 0 \quad \boldsymbol{x} \in \Gamma_l^N
\end{cases}$$

strong form + particle method

$$\begin{cases}
-\Delta u_l &= f_l \quad \boldsymbol{x} \in \Omega_l \\
u_l &= \theta_l \quad \boldsymbol{x} \in \Gamma_c \\
u_l &= 0 \quad \boldsymbol{x} \in \Gamma_l^D \\
\nabla u_l \cdot \mathbf{n} &= 0 \quad \boldsymbol{x} \in \Gamma_l^N
\end{cases}$$

weak form + finite element method

The Discretization

Goal: exploit the flexibility of the method and use two fundamentally different discretization schemes for the local and the nonlocal models

$$\begin{cases}
-\mathcal{L}u_n &= f_n \quad \boldsymbol{x} \in \Omega_n \\
u_n &= \theta_n \quad \boldsymbol{x} \in \widetilde{\Omega}_c \\
u_n &= 0 \quad \boldsymbol{x} \in \Omega_n^D \\
-\mathcal{N}(\mathcal{G}u_n) &= 0 \quad \boldsymbol{x} \in \widetilde{\Omega}_n^N
\end{cases}$$

$$\begin{cases}
-\Delta u_l &= f_l \quad \boldsymbol{x} \in \Omega_l \\
u_l &= \theta_l \quad \boldsymbol{x} \in \Gamma_c \\
u_l &= 0 \quad \boldsymbol{x} \in \Gamma_l^D \\
\nabla u_l \cdot \mathbf{n} &= 0 \quad \boldsymbol{x} \in \Gamma_l^N
\end{cases}$$

strong form + particle method

weak form + finite element method

$$\mathcal{L}u(\boldsymbol{x}) \approx 2 \sum_{i=1}^{N_{\boldsymbol{x}}} (u(\boldsymbol{y}_i) - u(\boldsymbol{x})) \gamma(\boldsymbol{x}, \boldsymbol{y}_i) V_{\boldsymbol{y}_i}$$

The Discretization

Note: the nonlocal solution is defined on points while the local solution is a piecewise polynomial over the computational domain

A modified functional: pointwise misfit

$$J_d(\mathbf{u}_n, \mathbf{u}_l) = \frac{1}{2} \sum_{i=1}^{n_b} \left((S_n \mathbf{u}_n)_i - (S_l \mathbf{u}_l)_i \right)^2 = \frac{1}{2} ||S_n \mathbf{u}_n - S_l \mathbf{u}_l||_2^2.$$

 S_n : nonlocal selection matrix

 S_l : $(S_l)_{ij} = \phi_j(x_i)$, where ϕ_j is the j-th FE basis

Geometry

Coupling Peridigm and Albany

peridigm.sandia.gov

software.sandia.gov/albany/

trilinos.org/packages/rol

Geometry

Coupling Peridigm and Albany

peridigm.sandia.gov

software.sandia.gov/albany/

trilinos.org/packages/rol

Geometry

Nonlocal domain: := $[0, 2.5] \times [0, 0.5] \times [0, 0.5]$

Local domain: := $[1.5, 4] \times [0, 0.5] \times [0, 0.5]$

Overlap domain: $:= [1.5, 2.5] \times [0, 0.5] \times [0, 0.5]$

Kernel:
$$\gamma(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} \frac{3}{\pi \varepsilon^4} \frac{1}{\|\boldsymbol{x} - \boldsymbol{y}\|} & \|\boldsymbol{x} - \boldsymbol{y}\| \le \varepsilon \\ 0 & \text{otherwise,} \end{cases}$$

The Patch Test

Analytic solution: $u_{anl}^* = x - \frac{5}{3}$, prescribed in $0 \le x \le 0.5$ and on x = 4

LtN control: initialized at zero in $2 \le x \le 2.5$ and on x = 1.5

points along length of the bar

points along length of the bar

points along length of the bar

Conclusions

- Presented two nonlocal problems: cDFT and nonlocal Poisson
- Couplings needed to
 - 1. save computational time,
 - 2. make feasible (given limited resources) problems too complex to be solved
- 3. use legacy codes, e.g. particle methods for nonlocal Poisson and FE for local one.
- Schwarz is in general rather robust but can fail when coupled models behave significantly differently on overlap region.
- Optimization-based coupling is a very general/flexible framework, although it can be expensive.
- Alternative methods not discussed here include the Blending method and the Arlequin method.

Thank you!

