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1. Background
Molecular dynamics (e.g. Lennard-Jones):

– Lagrangian nature
– Stiff force
– Atomic time step

(Allen & Tildesley, Oxford Uni. Press, 1989)

 Coarse-grained: Lattice gas automata
– Mesoscopic collision rules
– Grid based particles

(Frisch et al, PRL, 1986) FHP
(Hardy et al, PRL, 1973) HPP

Square lattice Hexagonal grids



1. Background

Square lattice

 History of DPD

FHP LGA model was introduced by 
U. Frisch, B. Hasslacher and Y. Pomeau in 1986

HPP LGA model was introduced by 
Hardy, Pomeau and de Pazzis in 1973

Hexagonal grids

Violation of Isotropy and 
Galilean Invariance

Mc Namara and Zanetti, 1988
LBGK scheme, Qian et al., 1992

Hoogerbrugge & Koelman, 1992



 Physics intuition: Let particles represent clusters 
of molecules and interact via pair-wise forces

Conditions:
– Conservative force is softer than Lennard-Jones
– System is thermostated by two forces 
– Equation of motion is Lagrangian as:

dtd ii vr 
 dtFd ii
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Hoogerbrugge & Koelman, EPL, 1992
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Mesoscale + Langrangian

This innovation is named as dissipative particle 
dynamics (DPD).
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2. Fluctuation-dissipation theorem
Langevin equations (SDEs)

With                        the independent Wiener increment:

Corresponding Fokker-Planck equation (FPE)



Gibbs distribution: steady state solution of  FPE

DPD version of fluctuation-dissipation theorem

Require Energy dissipation and generation balance

DPD can be viewed as canonical ensemble (NVT)

2. Fluctuation-dissipation theorem

Espanol, EPL, 1995



/

DPD thermostat

Then, the dissipative force 	and random force together act 
as a DPD thermostat.

and 2

To satisfy the fluctuation-dissipation theorem (FDT):

2. Fluctuation-dissipation theorem
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3. Parameterization
(How to choose DPD parameters?)

Strategy: match DPD thermodynamics to atomistic system

I. How to choose repulsion parameter?

Match the static thermo-properties, i.e.,  

Isothermal compressibility (water)

Mixing free energy, Surface tension (polymer blends)

II. How to choose dissipation (or fluctuation) parameter?

Match the dynamic thermo-properties, i.e.,

Self-diffusion coefficient,   kinematic viscosity 
(however, cannot match both easily)

Schmidt number                  usually lower than atomic fluid



1 /
1 /
2 1 / /

Force field of classic DPD

The conservative force 	is responsible for the static properties,
Pressure
Compressibility
Radial distribution function g(r)

The dissipative force 	and random force together act as a 
thermostat and determine the dynamics properties, i.e.,
Viscosity
Diffusivity
Time correlation functions

3. Parameterization
(How to choose DPD parameters?)



Pressure

Compressibility

P k T
2
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P k T
1
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Radial distribution function
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For linear conservative force 
1 /

The equation of state is
0.1

Then
1 0.2 /

3. Parameterization
(How to choose DPD parameters?)



Repulsion parameter for water?
Equation of state: self and pair contributions

Match isothermal compressibility

Groot & Warren, JChemPhys, 1997



Lattice Flory-Huggins free energy

Repulsion parameter for polymers

DPD free energy corresponds to pressure

Groot & Warren, JChemPhys, 1997



Diffusivity 

Viscosity There are two contributions to the pressure tensor: 
the kinetic part and the dissipative part 

＝
２
2
15

If 1 / , and using 1, we have
45
4

2
1575

Groot, R.D. and P.B. Warren, J. Chem. Phys., 1997.
Marsh, C.A., G. Backx, and M.H. Ernst, PRE, 1997. 

Consider the motion of single particle given by Langevin equation 

1 4
3

Self-diffusion coefficient 
1
3 0

Friction parameter?
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4. DPD ----> Navier-Stokes

Stochastic differential equations

Fokker-Planck equation

Mathematically equivalent

Mori projection for relevant variables

Espanol, PRE, 1995

Hydrodynamic equations
(sound speed, viscosity)

Strategy:



Stochastic differential equations

DPD equations of motion



Fokker-Planck equation

Evolution of probability density in phase space

Conservative/Liouville operator
Dissipative and random operators



Mori projection
(linearized hydrodynamics)

 Relevant hydrodynamic variables to keep

Equilibrium averages vanish



Mori projection
Navier-Stokes

Sound speed

Espanol, PRE, 1995



Mori projection
 Stress tensor via Irving-Kirkwood formula:

 Contributions:
 Conservative force
 Dissipative force



Mori projection
 Viscosities via with Green-Kubo formulas

 Shear viscosity η and bulk viscosity ζ

 Note that and contain a factor of 
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5. Navier-Stokes ----> (S)DPD



Story begins with 

smoothed particle hydrodynamics (SPH) 
method

Originally invented for Astrophysics
(Lucy. 1977, Gingold&Monaghan, 1977)

Popular since 1990s for physics on earth
(Monaghan, 2005)

5. Navier-Stokes ---> (S)DPD



SPH 1st step: kernel approximation



SPH 2nd step: particle approximation

Error estimated for particles on grid
Actual error depends on configuration of particles 

(Price, JComputPhys. 2012)



SPH: isothermal Navier-Stokes

Continuity equation

Momentum equation

Input equation of state: pressure and density
Hu & Adams, JComputPhys. 2006



SPH: add Brownian motion
Momentum with fluctuation (Espanol&Revenga, 2003)

Cast dissipative force in GENERIC  random force

dW is an independent increment of Wiener process

Espanol & Revenga, PRE, 2003



SPH + fluctuations = SDPD

Discretization of Landau-Lifshitz’s fluctuating 
hydrodynamics (Landau&Lifshitz, 1959)

Fluctuation-dissipation balance on discrete level

Same numerical structure as original DPD formulation



GENERIC framework (part 1)
(General Equation for Non-Equilibrium Reversible-Irreversible Coupling)

Grmela & Oettinger, PRE, 1997; Oettinger & Grmela, PRE, 1997

Dynamic equations of a deterministic system:
State variables x:  position, velocity, energy/entropy
E(x): energy/ S(x): entropy
L and M are linear operators/matrices and
represent reversible and irreversible dynamics

First and second Laws of thermodynamics

For any dynamic invariant variable I, e.g, linear momentum

if then



GENERIC framework (part 2)

Dynamic equations of a stochastic system:

Fluctuation-dissipation theorem: compact form

No Fokker-Planck equation needs to be derived

Last term is thermal fluctuations

Model construction becomes simple linear algebra 

Grmela & Oettinger, PRE, 1997; Oettinger & Grmela, PRE, 1997

(General Equation for Non-Equilibrium Reversible-Irreversible Coupling)
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6. Microscopic ----> DPD
• Mori-Zwanzig formalism



Mesoscopic system
Coarse-grained model

DPD

Irrelevant variables 
are eliminated

Microscopic system 
All-atom model

MD

C
G

CG: remove irrelevant degrees of 
freedom from a system

Coarse-Graining Benefits:
Accelerations on
 Space
 Time 



Dimension Reduction leads to memory effect and noise term.

Elimination of degrees of freedom from a system



Mori-Zwanzig Projection

ℙ

ℚ



Mori-Zwanzig Projection

Mori, ProgTheorPhys., 1965
Zwanzig, Oxford Uni. Press, 2001
Kinjo & Hyodo, PRE, 2007



Consider an atomistic system consisting of N atoms which
are grouped into K clusters, and NC atoms in each cluster.
The Hamiltonian of the system is:

2
,

,
1 1 , ,,

1
2 2

CNK
i

i j
i i j ii

H V
m


 
    

  
p

Theoretically, the dynamics of the atomistic system can be
mapped to a coarse-grained or mesoscopic level by using
Mori-Zwanzig projection operators.
The equation of motion for coarse-grained particles can be
written as: (in the following page)

MZ formalism as practical tool



If the coordinates and momenta of the center of mass of the coarse-
grained particles are defined as CG variable to be resolved

1
ln	

											 ∑ 0
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,
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Define ℙ and ℚ	as projection operators for a phase variable 

ℙ ∗ ∗
ℚ ℙ

Given the coarse-grained momentum, we identify ℚ ℚ as the random
force . Finally, we have the equation of motion for coarse-grained
particles

Details see Kinjo, et. al., PRE 2007. Lei, et. al., PRE, 2010. Hijon, et. al.,  Farad. Discuss., 2010.

ℙ

ℚ

MZ formalism as practical tool
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Kinjo & Hyodo, PRE, 2007

Friction force

Conservative force

Stochastic force

1. Pairwise approximation: 
2. No many-body correlation: 

MZ formalism as practical tool

Equation of motion for coarse-grained particles

0



First term: Conservative Force:

Second term: Dissipative Force:

0

MZ formalism as practical tool



The equation of motion (EOM) of coarse-grained particles resulting from
the Mori-Zwanzig projection is given by:

Conservative force Dissipative force Random force

The above EOM can be written into its pairwise form:

where is the instantaneous force whose ensemble average is taken
as the conservative force, the memory kernel 

0 ,
which satisfies the second fluctuation-dissipation theorem (FDT).

MZ formalism as practical tool

0



MZ formalism as practical tool

DPD model
DPD model comes from coarse-graining of its underlying microscopic system.
 Irrelevant variables are eliminated using MZ projection.
 Only resolve the variables that we are interested in.
 Unresolved details are represented by the dissipative and random forces.



Coarse-graining constrained fluids

DPD

Atomistic Model Coarse-Grained Model

Hard Potential CG Potential

Coarse 
graining

Degree of coarse-graining : Nc to 1

MD

Lei,  Caswell & Karniadakis, PRE, 2010

Constrain gyration radius



Dynamical properties of constrained fluids
Mean square displacement (long time scale)

MSD with R g = 0.95 (left) and R g = 1.4397(right)

Small Rg always fine Large Rg and high density



WCA Potential   + FENE Potential

NVT ensemble with Nose-Hoover 
thermostat.
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Coarse-graining unconstrained polymer melts

Natural bonds



Directions for pairwise interactions 
between neighboring clusters

1. Parallel direction:

2. Perpendicular direction #1:

3. Perpendicular direction #2:
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Three coarse-grained (DPD) models

Translational + Angular momenta

Translational momentum

1. MZ-DPD model:
CG force field obtained from microscopic trajectories. 

2. MZ-TDPD model:
CG force field obtained from microscopic trajectories. 

3. MZ-FDPD model:
CG force field obtained from microscopic trajectories. 

//
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DPD force fields from MD simulation

Conservative Dissipative (parallel one)

Li, Bian, Caswell & Karniadakis, 2014



Quantities MD MZ-DPD (error)

Pressure 0.191 0.193 (+1.0%)

Diffusivity
(Integral of VACF) 0.119 0.138 (+16.0%)

Viscosity 0.965 0.851 (-11.8%)

Schmidt number 8.109 6.167 (-23.9%)

Stokes-Einstein radius 1.155 1.129 (-2.2%)

Performance of the MZ-DPD model (Nc = 11)



Quantities MD MZ-TDPD (error)

Pressure 0.191 0.193 (+1.0%)

Diffusivity
(Integral of VACF) 0.119 0.111 (-6.7%)

Viscosity 0.965 1.075 (+11.4%)

Schmidt number 8.109 9.685 (+19.4%)

Stokes-Einstein radius 1.155 1.112 (-3.7%)

Performance of the MZ-TDPD model (Nc = 11)



Quantities MD MZ-FDPD (error)

Pressure 0.191 0.193 (+1.0%)

Diffusivity
(Integral of VACF) 0.119 0.120 (+0.8%)

Viscosity 0.965 0.954 (-1.1%)

Schmidt number 8.109 7.950 (-2.0%)

Stokes-Einstein radius 1.155 1.158 (+0.3%)

Performance of the MZ-FDPD model (Nc = 11)



Conclusion&Outlook
• Invented by physics intuition
• Statistical physics on solid ground

– Flucutation-dissipation theorem
– Canonical ensemble (NVT)

• DPD <-----> Navier-Stokes equations
• Coarse-graining microscopic system

– Mori-Zwanzig formalism


